
THE DESIGN AND DEVELOPMENT OF

SIGNAL-PROCESSING ALGORITHMS FOR AN

AIRBORNE X-BAND DOPPLER

WEATHER RADAR

Shaun R. Nicholson

Radar Systems and Remote Sensing Laboratory

Department of Electrical Engineering and Computer Science, University of Kansas

2291 Irving Hill Road, Lawrence, Kansas 66045-2969

TEL: 913/864-4835 * FAX: 913/864-7789 * OMNET: KANSAS.U.RSL

RSL Technical Report 10540-1

September 1994

Supported by:

Global Change Fellowship Program

National Aeronautics and Space Administration

Washington DC 20546

Grant No. NGT-30202

P

Abstract

Improved measurements of precipitation will aid our understanding of the role of latent

heating on global circulations. Spaceborne meteorological sensors such as the planned

precipitation radar and microwave radiometers on the Tropical Rainfall Measurement

Mission (TRMM) provide for the first time a comprehensive means of making these global

measurements. Pre-TRMM activities include development of precipitation algorithms

using existing satellite data, computer simulations, and measurements from limited aircraft

campaigns. Since the TRMM radar will be the fist spaceborne precipitation radar, there is

limited experience with such measurements, and only recently have airborne radars

become available that can attempt to address the issue of the limitations of a spaceborne

radar. There are many questions regarding how much attenuation occurs in various cloud

types and the effect of cloud vertical motions on the estimation of precipitation rates. The

EDOP program being developed by NASA GSFC will provide data useful for testing both

rain-retrieval algorithms and the importance of vertical motions on the rain measurements.

The purpose of this report is to describe the design and development of real-time

embedded parallel algorithms used by EDOP to extract reflectivity and Doppler products

(velocity, spectrum width, and signal-to-noise ratio) as the first step in the aforementioned

goals.

Table of Contents

Chapter 1 - Introduction ... 1
1.0 Introduction .. 5

1.1 Earth System Interactions .. 7
1.2 What Now? .. 8

1.3 Purpose of this Paper .. I0

Chapter 2 - Background ... 11

2.0 Historical Digression ... 11

2.1 Scientific Objectives .. 12

2.1.1 Structure of Deep Isolated Thunderstorms .. 12

2.1.2 Anvil Structure and Dynamics ... 12

2.1.3 Structure of Mesoscale Convective Systems ... 16

2.1.4 Cloud Microphysics ... 16

2.1.5 Testing of Satellite Precipitation Algorithms ... 17

2.2 Existing and Proposed Airborne Radars ... 19

Chapter 3 - System Design ... 22

3.0 System Overview .. 22
3.1 RF Section .. 25

3.2 Data System .. 28

3.2.1 Radar Interface Board (RIB) .. 30

3.2.2 Data Acquisition Board (ACQ) ... 35

3.2.3 LMAP Unit Array Processor Board (LUA-200) 36

3.2.4 Host Computer (E-6) .. 41

Chapter 4 - Measurement Uncertainties .. 43

4.1 Reflectivity Processing ... 43

4.1.1 The Need for Reflectivity Averaging ... 43

4.1.2 An Averaging Algorithm for the DSP32C ... 47

4.1.3 Number of Independent Samples ... 53

4.2 Doppler Processing .. 55

4.2.1 Autocovariance Processing .. 55

4.2.2 DSP32C Implementation ... 59

4.2.3 Pulse-pair Velocity Estimate Uncertainties .. 62

Chapter 5 - Conclusions ... 64

5.0 Status of Software Development ... 64

5.1 Automatic Gain Control .. 64

5.2 Antenna Stabilization ... 67

¢ 2

References... 78

Appendix A - Listing of RIB Software .. 82

Appendix B - Listing of ACQ Software ... 83

Appendix C - Listing of Reflectivity Code .. 84

Appendix D - Listing of Autocovariance Software ... 85

Figure 2-1:

Figure 2-2:

Figure 3-1:

Figure 3.2:

Figure 3-3:

Figure 3.4:

Figure 3-5:

Figure 3-6:

Figure 3-7:

Figure 5-1:

Figure 5-2:

Figure 5-3:

Figure 5-4:

Figure 5-5:

List of Figures

Schematic of cloud-top structure for a Midwest severe

thunderstorm ... 14

Evolving structure of a Mesoscale Convective System 17

Typical multi-instrument configuration of ER-2 23

EDOP measurement concept ... 24

Block diagram of RF subsystem .. 26

Layout of EDOP system in ER-2 Nose .. 27

Data System block diagram ... 29

Block diagram of LUA-200 signal-processing board 37

Data destination codes ... 40

Convective clouds observed during CAMEX 65

STC Concept .. 66

Relationship between rotating and inertial coordinate systems 70

Angular displacements are not commutative 72

Rotations used to derive rotation matrix .. 73

Chapter I - Introduction

1.0 Introduction

Global climate models depend upon knowledge of the atmospheric variables on a

worldwide scale. Though satellites have greatly improved the inputs to these models,

much remains to be done before inputs are adequate for long-range forecasts and study of

major global changes. In particular, we can only crudely model the major heat exchange

between atmosphere and surface that takes place in tropical rainfall (Simpson, 1988).

Current models for global circulation depend largely on sparsely-spaced upper-air

soundings and surface measurements at infrequent intervals in time and space. Moreover,

lack of most meteorological parameters on model grid scales (200 kin) at the surface and

aloft over the oceans represents a major gap in knowledge. Clearly this information is a

requirement to improve global circulation models.

Tropical rainfall is critical to the distribution of life-giving water throughout our Earth

system. Over two-thirds of the worldwide precipitation falls in the Tropics, releasing

latent heat and thereby powering the global atmospheric circulation that shapes our world

climate. English scientist G. Hadley (18th century) was the first to understand the central

role played by tropical rainfall in shaping Earth's climate. In brief, cool low-level moist air

flowing toward the equator replaces heated equatorial air as it ascends and moves toward

the poles at high altitudes. Stored solar energy is released as latent heat when the water

vapor condenses into cloud clusters or Hadley cells reaching hundreds of kilometers in

horizontal extent. Of these, perhaps one in ten deepens into a tropical cyclone. The solar

energy released as latent heat by raining tropical clouds is the main source of energy for

global atmospheric motions. In fact, low-level Hadley circulation carries evaporated water

from over one-half the earth's surface into the Inter Tropical Convergence Zone (ITCZ)

where it is precipitated by raining tropical systems.

Rainfallin theTropicsadditionallyplaysafundamentalrolein theEl Nifio climate

anomalieswhosedisruptionsto worldwideprecipitationpatternstriggerfloodsand

droughtaroundtheglobe. It's four- to five-year-averagecycle is associatedwith

anomalouswarmingof equatorialsurfacewatersextendingfrom theEasternPacificto the

coastof SouthAmerica. This warming is nearly always accompanied by large-scale shifts

in atmospheric pressure that go from the East to the West Pacific and back in an

oscillatory manner often referred to as the Southern Oscillation. The El Nifio and

Southern Oscillation are merely two manifestations of the same climatic disturbance--the

ENSO event.

The importance of determining, at least climatologically, the rainfall in the Tropics is the

subject of many papers and reports leading to the Tropical Rainfall Measurement Mission

(TRMM). Lau et al. state that latent heating by precipitation causes about 40% of the

energy flux to and from the atmosphere. This takes place largely in poorly instrumented

tropical regions: oceans with little ship traffic and less-developed land areas with few

weather stations. The information on this rainfall is so sparse that we do not even have

adequate climatological data, much less synoptic data. The purpose of TRMM is to

provide a first look at this climatology globally below 35 ° latitude.

Whereas TRMM will be able to measure rainfall rates on a climatological basis, it cannot

provide wind velocities over the same tropical environment. Observations of horizontal

winds and convection on a global scale are necessary for advancing our knowledge of

large-scale atmospheric circulation and climate dynamics, thereby improving our

understanding of the global biogeochemical and hydrologic cycles. Wind measurements

are particularly important in the Tropics where there are few observing stations--indeed,

it has been suggested (NASA, 1987) that wind profiles are the single most important new

datasourcebecause of their potential for dramatically advancing our skill at Numerical

Weather Prediction (NWP).

1.1 Earth System Interactions

The atmosphere, oceans, and land biomass systems are closely coupled through the

unifying role of global hydrology. Because of this, studies of rainfall are essential to gain

deeper understanding of our Earth system.

General Circulation Models (GCM) simulate general atmospheric features to investigate

the climate variations that take place on a variety of temporal scales. Existing GCM

predictions are extremely sensitive to the assumed vertical distribution of latent heating by

equatorial cloud systems; however, the vertical distribution of cloud layers is poorly

observed. This casts doubts on our understanding of the role played by clouds in the

climate system and their effects on the surface-radiation balance and profile of heat

absorption and re-radiation throughout the atmosphere.

The response of cloud systems to environment is an important link in a chain of processes

responsible for monsoons, ENSO events, and other climate variations. Numerical models

of precipitation systems provide essential insights to the interaction of clouds with each

other, their surroundings, and land/ocean surfaces. They are needed to convert rain-rates

derived utilizing radiometric temperatures from spaceborne microwave and radiometers

into latent-heating profiles. Such models further aid computations of the total energy

budget, which consists of radiative and latent heating effects. Though poorly observed,

cloud profiles strongly impact the hydrologic and carbon cycle. Clearly, improved

observations of clouds are critical for updating global circulation models used in climate

prediction.

Ocean-atmosphereinteractionslikewiserenderakey rolein theEarthsystem. For

example,ashorizontalwindsstresstheseasurface,oceaniccirculationsdevelop

influencingthetransportof heatacrosstheocean-atmosphereboundary.Freshwater

fromprecipitationfurtheralterssea-surfacetemperaturesasdocloudsthatshieldthe

oceansurfacefrom solarradiation.Theresultis acomplexwebof interactionbetweenthe

wind andwaterthat actsto regulateourclimate.

In equatorialforestregions,tropical rainfall directly influencestheterrestrialwaterand

energybalance.Widespreadcloudinessshieldstropical forestsfrom direct sunlight

encouraginghigh growthratesandalargestandingbiomass.Mostof thewaterreceived

asrainfall is returnedto theatmospherein ten-daycyclesthroughevaporationand

transpiration,leadingusto view thetropicalforestandatmosphereasa singlewaterand

energyregulationsystem.Forestsandsoilsarealsoamajorsourceof manyatmospheric

traceconstituents(e.g.,carbonmonoxide,methane,andthehydroxyl radical)thatare

takeninto the loweratmosphereduringconvectiverainstorms.Thisexchangeprovidesa

directlink betweenrainfall andtheglobalbiogeochemicalcycles that regulate life on

Earth.

1.2 What now?

Existing spacebome atmospheric sensors are passive in the visible, infrared (IR), and

microwave parts of the spectrum, and the measured radiometric temperatures are

vertically integrated quantities. The visible and IR instruments sense upwelling radiation

near cloud tops. Passive-microwave instruments provide integrated liquid water and

water vapor estimates. Thus, interpretations of these temperatures to retrieve physical

quantities are often difficult and frequently necessitate the use of complementary

instruments to provide vertical structure because of the inherent lack of passive, vertical-

profiling capability. Now we can look forward to development and deployment of

spaceborne radars to provide vertical precipitation structure for meteorology. The f'trst of

these will be on the TRMM, scheduled for launch in 1997, and will provide vertical

precipitation profiles using the radar reflectivity. Such measurements can then be

combined with cloud models to estimate profiles of latent heating.

The basic problem with existing studies is that they have been tested with limited aircraft

data. Intensive aircraft campaigns are necessary to validate cloud models and algorithms

as well as provide case studies and reference measurements for their spaceborne

counterparts. To test them, both radars and radiometers must fly above thunderstorms

and precipitation systems in regions where surface measurements of precipitation are

available. Whereas surface measurements provide rain rates and total rain amounts

directly, aircraft or satellite measurements provide only indirect indications of the rain rate

from the backscattered power (or radar reflectivity). These estimates are based on

empirical relations and can be ambiguous. For example, they assume that vertical air

motions in clouds are negligible, when in fact they can be substantial. Existing rain-

retrieval algorithms fail to utilize knowledge of vertical wind motions because they are

unavailable. While it has been argued that these errors are minimized in the monthly-

averaged data such as will be provided by TRMM, it is desirable to more closely examine

the effect of vertical motions on rain-rate estimates using aircraft instrumented with radar

and radiometers.

An X-band Doppler radar, the EDOP developed by the National Aeronautics and Space

Administration's Goddard Space Flight Center (NASA GSFC), has now begun flying at

high altitude on the ER-2 aircraft (Heymsfield et al., 1989; Heymsfield et al., 1993). This

system will make possible the testing of algorithms for rain retrieval, the concepts for

radar wind measurement, and the validation of existing cloud models.

1.3 Purpose of this paper

The purpose of this Masters project is to document the design and development of real-

time embedded parallel-processing algorithms executed by the EDOP Data System. These

algorithms reduce raw radar measurements to reflectivity and Doppler products (velocity,

spectrum width, and signal-to-noise ratio) resulting an effective compression of the raw

data exceeding 400:1.

To provide the reader with necessary background material, Chapter Two introduces

EDOP's scientific objectives and compares the role of EDOP to existing airborne radars in

meeting these needs.

EDOP is understandably a complicated system and discussion of its signal processing

algorithms is incomplete without an overview of the system design. Chapter Three

examines the RF and digital hardware in limited detail to give the reader an appreciation of

the interaction between various system components during operation and the manner in

which they constrain algorithm development.

The design and development of the reflectivity and Doppler signal-processing algorithms

are investigated in detail in Chapter Four. This chapter forms the basis for this report and

additionally derives estimates of the measurement accuracies.

Chapter Five concludes this report by exploring the remaining tasks needing completion

before EDOP fully meets its specified operational state. Two remaining tasks of particular

importance include nadir antenna stabilization and development of an automatic gain

control to prevent receiver saturation due to the large dynamic range of received weather

echoes.

10

Chapter Two - Background

2.0 Historical Digression

The earliest known treatises on meteorology date back to Aristotle's (384-322 B.C.)

publication of Meteorologica. Though his pupil, Theophrastus, continued the work of

writing about winds and weather signs, progress was excruciatingly slow for the next 2000

years--largely due to a lack of instruments for observing the primary measurables. The

early seventeenth century heralded rapid growth in meteorological research due to the

invention of the thermometer (Galileo, 1607) and barometer (Evangelista Torricelli, 1643)

as well as the discovery of Boyle's Law (1659). Less than forty years later, Edmund

Halley (1696) ushered the era of Earth System Science through his attempt to explain

general circulation by variable surface heating. Further attempts were made to explain

atmospheric motions during the 1700's (Hadley, 1735; Lavoisier, 1783), but it wasn't until

John Dalton realized in 1800 the relation between expanding air and atmospheric

condensation that the physical basis of modern meteorology was established. Between

1800 and 1815, J. B. Lamarck, with the help of Lavoisier, Laplace, and others, created the

first international compilation of weather observations. These synoptic observations

affirmed the existence of characteristic patterns of pressure, temperature, winds, and,

moreover, empirical rules for their development, movement, and the consequent weather

changes. Such knowledge was of immediate benefit to the large number of sailing ship

captains who invested in M. F. Maury's 1848 publication of global wind-field maps. The

development of rubber balloons (1890's) led to the frequent sampling of the upper

atmosphere by France, Germany, and England. Observations of winds aloft could then be

made by watching the motion of the balloons, provided they didn't enter the clouds!

The first verified report of a precipitation-radar echo was by a 10 cm system that tracked a

shower to a distance of seven miles off the English Coast on 20 February, 1941. Some

11

veryweakechoeswerethoughtto beattributedto stormsasearlyas 1938; however,the

detectionof hydrometeorswasseverelylimitedby thefactthatavailablemethodsof RF

powergenerationresultedmaximumfrequenciesbetween200and400 MHz. The

subsequentdevelopmentof thehighly secretBritishmagnetronexpandedtheboundaryto

3000MHz (S-band)andlater10,000MHz (X-band)inspiringthegenesisof radar

meteorology.

2.1 Scientific Objectives

The EDOP radar's major justification is to provide a means to study the dynamic and

hydrometeor structure of thunderstorms and mesoscale convective systems using a

comprehensive instrument package on the ER-2. The aim is to improve the

understanding of thunderstorms and larger scale or mesoscale convective systems using

present and future satellites (e.g. GOES, TRMM, EOS-MIMR). Specifically, EDOP's

scientific objectives are to provide radar data in conjunction with the multi-frequency

measurements from other ER-2 complementary instruments to:

• Better understand the structure of deep isolated thunderstorms,

• Determine the structure and dynamics of both the overshooting and anvil

portions of individual thunderstorms,

• Define the mesoscale structure and dynamics of mesoscale convective systems

(MCS) including squall lines and mesoscale convective complexes,

• Better understand the cloud microphysics in isolated thunderstorms and

MCS's,

• Test proposed satellite passive- and active-microwave precipitation-estimation

algorithms.

12

2.1.1 Structure of deep isolated thunderstorms

It is of interest to utilize satellite IR imagery for nowcasting of thunderstorms,

precipitation estimation, and studies of thunderstorm anvil structure. Intense midwest

thunderstorms frequently exhibit peak vertical-wind motions of 40-50 m/s and

reflectivities exceeding 60 dBZ with large hail in the vicinity of the updraft core.

Numerous studies have probed the updraft structure utilizing multiple ground-based

Doppler radars by integration of the mass-continuity equation which uses horizontal wind

measurements to deduce vertical wind speeds. Yet these vertical-wind speeds estimates

often have accuracies only to within a few meters per second. Contamination of radial

velocities by ground clutter and weak signal-to-noise ratios (SNR) result in inadequate

estimates of mass divergence in the boundary layer leading to poor estimates of vertical

velocities (w). Interpolation of radial velocities from different radars to a common 3-

dimensional grid, grid filtering, and estimation of top and bottom boundary conditions

required for w calculations further degrade vertical velocity accuracy. Moreover, typical

radar sampling resolutions limit resolvable scales of motion to greater than 5 km

(Carbone, ! 985). A vertically pointing airborne radar can mitigate these problems.

2.1.2 Anvil structure and dynamics

Satellite infrared observations of severe thunderstorms frequently show a thermal couplet

near cloud tops and a "V" shaped region of cold temperatures on the anvil scale

(Heymsfield et al, 1983). Explanations of these phenomena are controversial; however, it

is generally accepted that cloud air is warmed as overshooting and negatively buoyant

updraft air subsides downwind of the cloud top (Heymsfield, 1983; Schlesinger, 1984;

Adler and Mack, 1986). An alternative explanation (Heymsfield and Blackmer, 1988),

schematically illustrated in Figure 2-1, is based on the generation of lee waves by

stratospheric flow over the penetrating cloud tops; however, no insitu data exist to

confirm the various hypotheses. This inadequate knowledge of vertical-motion structure

13

A. VERTICAL VIEW

C_ _--- _.__.

"'_'_=_"_'_ _ - A W --"_--I
y _ Updraft Air--_ Stratospheric Flow

[_ Ambient Flow

0 Subsidence

Figure 2-I: Schematic of cloud-top structure for a

Midwest severe thunderstorm (Heymsfield, 1979)

and precipitation profiles hampers effective utilization of GOES imagery to deduce the

mixing of penetrating updraft air with stratospheric air.

Both airborne and ground-based radars typically determine vertical velocity by integrating

horizontal winds using the mass-continuity equation. The limits of integration require

knowledge of the top and bottom boundary conditions; however, existing radars regularly

fail to see the small ice crystals in the tops of storms, and the resulting ambiguous

estimates of the top boundary introduce error into the vertical-velocity estimates. An ER-

2 radar can measure the weak cloud top echoes with greater accuracy because of its

close proximity--- often the cloud tops are only 3-5 km below the aircraft.

In addition to the overshooting portion of the storm, the surrounding anvil is of great

interest. Anvils produced by deep isolated thunderstorms are frequently extensive----much

larger than the core region itself. The horizontal extent, depth, and hydrology of the anvil

are related to storm factors such as updraft intensity, longevity, precipitation efficiency,

and vertical shear; yet, convection can perturb the mesoscale environment in such a way

as to feed on the convection itself. To better understand the complete dynamics of deep

convection, it is necessary to obtain improved observations of air motions within the anvil

region. Ground-based radars inherently obtain poor samples of the anvil region because of

its large horizontal extent (hundreds of kilometers). Furthermore, such radars are rarely

situated directly under the thunderstorm for ideal viewing; instead, they must observe

distant events. The mobility of an ER-2 radar makes it ideally suited for anvil-region

studies.

15

2.1.3 Structure of mesoscale convective systems

Within the past decade, considerable attention has been devoted to probing the two- and

three-dimensional structure of mesoscale convective systems (Figure 2-2). These systems,

extending a few hundred kilometers, are often composed of both convective and stratiform

precipitating regions. Updrafts of 20 m/s or more are common in the convective region

whereas the weaker stratiform circulations are driven largely by diabatic heating and

cooling processes such as melting of ice or evaporation of rain. While multiple Doppler

networks of ground based radars can be used to observe these mesoscale systems,

airborne platforms are better suited due to their greater mobility. Conventional techniques

require integration of the mass-continuity equation thereby resulting estimates of vertical

motion with sometimes larger than desirable uncertainties. Recently, the scanning pattern

of the NOAA P-3 radar has been changed to utilize an approach similar to that of

ELDORA. This has provided effective vertical incidence data in limited regions flyable by

the P-3 (Marks and Houze, 1987). An ER-2 based radar would have the mobility to

provide similar measurements from directly above convective storms.

2.1.4 Cloud microphysics

The EDOP radar should additionally have the capability to deduce the precipitation phase

of hydrometeors by making polarimetric measurements. The linear depolarization ratio

(LDR) is conventionally defined as the ratio of received power at two orthogonal

polarizations from a linearly-polarized transmitted pulse:

LDR = 10 log

Hailstones tend to show no preference to polarization because they tumble during descent

due to their large size and typically exhibit LDR ratios of -10 dB. Raindrops, however,

16

Figure 2-2: Evolving structure of a mesoscale

convective system during initiation (I),

organization (II), and mature stages (III).

From Zipser (1987).

tend to flatten while falling resulting in ratios less thar1-30 dB. Snow takes on

intermediate values. The design of EDOP's antennas and radome provide moderate

isolation (-28 dB) between the polarizations; nevertheless, this shouM be sufficient to

discriminate hail from other hydrometeor types thereby providing additional justification

for assuming a particular hydrometeor fallspeed.

2.1.5 Testing of satellite precipitation algorithms

Ground-based radars offer excellent spatial and temporal coverage over limited regions,

but often weather systems are beyond range of these radars (e.g. no data exist over the

oceans). These ground-based measurements consequently provide insufficient

precipitation estimates for use in global-scale weather prediction, climate, and radiative-

transfer models. Spacebome meteorological sensors such as the planned precipitation

radar and microwave radiometers on the Tropical Rainfall Measurement Mission (TRMM)

provide for the f'trst time a comprehensive means of making these global measurements,

but much needs to be learned about algorithms combining passive-microwave and radar

measurements. Necessary pre-TRMM activities include development of precipitation

'algorithms using existing satellite data, computer simulations, and measurements from

limited aircraft campaigns. Since the TRMM radar will be the first spacebome

precipitation radar, there is limited experience with such measurements, and only recently

have airborne radars become available that can attempt to address the issue of the

limitations of a spacebome radar. Although the operating frequency of EDOP is different

from that of TRMM, the less-attenuated wavelength should be valuable in this "combined"

algorithm development and provide necessary ground truth for calibrating spacebome

radars. The dual-beam approach used by EDOP will additionally provide a unique

opportunity to test the dual-beam rainfall-estimation algorithm proposed by Testud

(1987)for use with airborne and spaceborne systems. This method uses a variational

approach to obtain path attenuation and relates it to the rain rate using a power law.

18

2.2 Existing and proposed airborne radars

There presently exists an abundance of airborne radars which can be grouped into two

general categories: precipitation and cloud radars. Precipitation radars are used to

measure the structure and evolution of actively precipitating and possibly convective

systems whereas cloud radars penetrate and observe the vertical distribution of cirrus,

stratocumulus, shallow cumulus, and other radiatively important cloud types. Often these

systems are designed for specific applications so it is important to confer the uniqueness of

EDOP in relation to existing and proposed systems (Table 2-1) and show its role in

advancing our understanding of meteorology.

The NOAA P-3 radar is mounted on the tail of the P-3 aircraft and scans in a helical

fashion to efficiently radiate the space around the aircraft. This radar, in operation since

1983, can sample reflectivity fields and provide both single- and dual-Doppler

observations from a maximum altitude of about 8 km. In the dual-Doppler mode, the

aircraft must fly a checkerboard flight track such that alternating flight tracks are normal

to each other. If the observed storms undergo significant changes during the data

collection period, the time difference between orthogonal tracks can result in large errors

in the calculated wind fields (Hildebrand and Moore, 1992).

The ELectra DOppler RAdar (ELDORA) is an X-band, scanning, dual-beam, stepped-

frequency system developed jointly by the National Center for Atmospheric Research

(NCAR) and the French Centre de Recherch6 en Physique de l'Environnement (CRPE).

Under an agreement signed in 1990, NCAR supplied the transmitter, receiver, signal

processor, data system, and aircraft whereas CRPE provided the antennas (Hildebrand,

Testud, 1992)

19

ELDORA/ASTRAEAfliesbetween8 and10 km on the NCAR Electra making radial

dual-Doppler velocity and reflectivity measurements of storm structure and kinematics

with sufficient accuracy to derive thermodynamic properties of the storm such as

buoyancy, heat and water transport.

NASA's Jet Propulsion Laboratory began development of the Airborne Rain Mapping

Radar (ARMAR) in 1986. This DC-8 based, dual-wavelength, polarization diverse, pulse-

compression system will largely be used to validate TRMM (Ira et al., 1992). It's short

term goals are to verify the TRMM radar system design, allow development and testing of

spacebome rain-retrieval algorithms, and serve as a reference for the validation of TRMM

data after launch in 1997. This dedicated research tool will further serve as a testbed for

developing future spacebome techniques and technologies for spaceborne rain radars.

An airborne rain-scatterometer/radiometer has been developed by the Radio Research

Laboratories (CRL) in Japan (Okamoto et al., 1982). This dual-wavelength, X- and K a-

band system has been operated on a variety of aircraft (e.g. Cessna 404, NASA T-39,

NASA DC-8, NASA P-3) at altitudes up to 12 km. This system was originally designed

to study the bright-band structure of rain but has since been used to examine hydrometeor

growth processes. It should be noted that this is a non-Doppler system.

The NASA Goddard Space Flight Center is presently developing a W-band (94-GHz),

polarization-diverse, scanning, Doppler radar to be flown with a host of ER-2 based

instruments including EDOP, CLS, AMPR, and MIR (Racette, Heymsfield, 1993). The

Doppler observations will provide insight into the dynamics of clouds. It will further serve

as a useful test-bed to determine the utility of a future spaceborne cloud radar.

20

TheUniversitiesof MassachusettsandWyoming havecollaboratedto produceafully

polarimetric,W-band,King-Air basedcloudradar(Vali, 1993).This systemcanbe

pointedeitherhorizontallyor verticallyperpendicularto theflight pathto determineco-

andcross-polarizationpowerandphaseandDopplervelocity. Preliminarytestflights

revealedanunexpectedsharppeakin LDR atthemelting-layerboundary. It is believed

thatthis is theresultof anasymmetryin themelt-waterdistributionson theicecrystals.

Clearlynooneinstrumentcando it all. A comprehensive package of passive- and active-

microwave sensors such as those on the ER-2 in conjunction with EDOP is ideal for

study of these complicated phenomena.

Table 2-1:

Instrument

NOAA-P3

ELDORM

ASTRAEA

ARMAR

CRL

CRS

KING-AIR

Existing and Planned Airborne Meteorolosical Radars

Frequency Band Operator Comments

X NOAA scanning, dual-

X

K, Kal

NCAR/CRPE

(France)

JPL

aRE (Japan)

NASA/GSFC

Universities of

Massachusetts/

Wyoming

W

Doppler

scanning, dual-

beam, stepped

frequency

polarization-

diverse, pulse-

compression,
TRMM simulator

non-Doppler

scanning,

polarization-

diverse, cloud

radar, still in

development phase

fully polarimetric

21

Chapter 3 - System Design

3.0 System Overview

EDOP is an X-band, dual-beam, polarization-diverse weather radar developed for the

NASA ER-2 aircraft (Heymsfield et. al., 1989; Heymsfield et. al., 1991). Figure 3-1

illustrates a typical configuration of EDOP and complementary instruments in the ER-2

payload bays. The system flies at a nominal altitude of 20 km (70,000 ft.) to map out

time-height sections of hydrometeor reflectivity as well as vertical and along-track wind

velocities (Figure 3-2). The nadir antenna measures co-polarization reflectivity, Doppler

velocity, and spectrum width. Its velocity measurements are used to provide a direct

indication of vertical air motion once the hydrometeor fall speed is removed. A second

forward-pointing antenna (30 ° from nadir) measures cross-polarization reflectivity in

addition to the previous parameters and can be used to determine the linear depolarization

ratio (LDR) useful for assessing hydrometeor type and providing additional justification

for the assumed fall speed.

Real-time reflectivity and Doppler processing of seven (four linear and three logarithmic)

channels of data are accomplished by a data system built in-house at Goddard. Two four-

channel A/D VME 9U cards sample the analog signals at 4 MHz to provide 37.5 m

resolution in range. Three Martin Marietta LUA-200 linear-mapped array signal-

processing boards each containing eight AT&T WEDSP32C digital-signal-processors

provide peak computational speeds of 600 million floating-point operations per second

(MFLOPs) when clocked at 50 MHz. A Radar Interface Card (RIB) establishes direct

control of transmiuer and receiver functions. Finally, a 68030 VME-based Eltec E-6

Single Board Computer is used as a host.

22

n

Q
O

Figure 3-I: Typical mulit-instrument configuration of ER-2.

! !
0 0

(l_iM) J.HOFIH

Figure 3-2: EDOP measurement concept (Heymsfield, 1993)

3.1 RF Section

Performance specifications for EDOP and a system block diagram are provided in Table 3-

1 and Figure 3-3, respectively. In addition, Figure 3-4 illustrates the layout of system

components in the ER-2 nose cone.

Table 3-1: EDOP Specifications

Frequency
Peak Power

Duty Cycle

Pulse Length

PRF

9.72 GHz

20 kW

1% max

0.25, 1.00 Its

2200, 4400 Hz

Antenna Diameter 0.76 m

Antenna Beamwidth 2.9 °

First Sidelobe Level -30 dB

Cross-polarization Level -38 dB

Receiver Dynamic Range

Number of Doppler Channels

Number of Log Reflectivity Channels
Nadir-Beam:

Transmit Polarization

Received Polarization

Forward-Beam:

Transmit Polarization

Received Polarization

110 dB

2

Horizontal

Co-polarized

Vertical

Co-pol. and

Cross-pol.

A 9.66 GHz coherent phase-locked oscillator is used to generate the transmit carrier

frequency of the system. This RF energy is mixed with the 60 MHz local-oscillator and

gated by a set of switched PIN diodes before being amplified by a high-gain 20 kW Litton

air-cooled Traveling Wave Tube (TWT) amplifier and routed through circulators to dual

high-gain (36 dBi) offset-fed parabolic antennas. The existing mode of operation allows

power to be radiated simultaneously through both antennas; however, some consideration

has been given to a future second-mode where power is radiated in alternate pulses

between the two antennas.

25

T

Figure 3-3: Block diagram of RF subsystem

UJ

_3
Z
III

_| C9 _

\

U.I

121

Figure 3-4: Layout of EDOP system in ER-2 nose (Heymsfield, 1993)

A low-noise RF gallium-arsenide pre-amplifier positio.ned near the antennas limits the

receiver noise figure to approximately 1.8 dB. Nadir co-polar and forward co- and cross-

polarized reflectivity channels pass through logarithmic detectors at the 60 MHz IF and

then to the data system for real-time processing. Meanwhile, linear synchronous detectors

beat dual-Doppler RF channels to baseband providing the data system with four (4) I and

Q channels for Doppler-velocity extraction. Digitally controlled RF and IF attenuators are

utilized to manipulate receiver gain, but an automatic gain-control (AGC) algorithm has

not yet been implemented.

3.2 Data System

The major objective of real-time processing is the reduction of the raw data to levels that

can be stored using cost-effective technology. It would be preferable to store raw data

and perform off-line processing with a variety of algorithms; however, a simple calculation

illustrates that this goal is not currently practical: in the highest resolution mode (37.5 m

range gate spacing), the A/D conveners on each ACQ board acquire 12-bit samples sign-

extended to 16 bits at a rate of 4 MHz. The conversion of three logarithmic and four

linear channels (seven total) results a raw-data bandwidth of 56 Mbytes/second. At this

rate, an eight-hour flight will necessitate storage of 1.6 Terabytes of information! By

performing real-time reflectivity and Doppler processing and storing only the products, the

data rate can be reduced by a factor of 400 or more (depending on the chosen integration

cycles) allowing for convenient data archival on a 5 Gb Exabyte tape. A block diagram is

provided in Figure 3-5 to illustrate the flow of information between the data system and

other system components. The individual circuit boards that comprise the data system axe

described in limited detail in the remaining paragraphs of this section.

28

Figure 3-5:
Data System block diagram

--r

3.2.1 Radar Interface Board (RIB)

The Radar Interface Board (RIB) is responsible for generating the various system clocks

and phase-locking them to the 10 MHz STALO oscillator in the radar transmitter. It is

further used to control radar transmitter and receiver operations by supplying a transmit

waveform used to modulate the RF carrier, selecting receiver bandwidth, and performing

radar calibration operations. Automatic gain control is accomplished by manipulating RIB

supplied analog signals to 60 dB RF- and IF-attenuators in the receiver. Acquisition of

analog system status information such as temperature and pressure measurements within

the transmitter, receiver, and data system, is achieved using a 16-channel 12-bit A/D

converter. Furthermore, an octal 8-bit DAC provides the board with analog output for

signaling and control. This capability is enhanced by 16 bits of digital I/O which are not

presently utilized.

Central to the operation of the RIB is a single programmable AT&T WEDSP32C digital-

signal-processor chip which executes embedded software to provide radar control. A

typical embedded program appears in Appendix A and was used during the 1993 CAMEX

experiments at the NASA Wallops Flight Facility.

This program begins by assigning pointers to the Board Control Register (BCR) and

Radar Status Register (RSR). These registers, shown in Tables 3-2 and 3-3, specify the

radar operating parameters (e.g. PRF, pulse width, etc.) and indicate the operating state of

the system. Immediately after system powerup, the radar enters a warmup mode, heating

the TWT to the proper operating temperature before transmitting. During this warmup

period the RSR reports an operational status of STANDBY, and the RIB embedded code

acquires and records the following status information twice each minute:

30

BoardStatusRegister
RadarStatusRegister
TransmitterBaseTemperature
ReceiverBaseTemperature
TransmitterAir Temperature
ReceiverAir Temperature

(BSR)
(RSR)
(ADCDAC0)
(ADCDAC1)
(ADCDAC2)
(ADCDAC3)

TransmitterLocalOscillatorTemperature(ADCDAC4)
UnusedChannel (ADCDAC5)
TransmitterNitrogenPressure (ADCDAC6)
UnusedChannel (ADCDAC7)
RIB AmbientTemperature (ADCDAC8)

TheADCDAC registersare12-bitsampledanalogsignalsconnectedto various

thermistorsandpressuretransducers.

After thepilot movestheoperationswitchto theRADIATE positionandwarmupis

complete,thetransmitterattemptsto enteraradiatemode.To facilitateasuccessful

modechangetheRIB mustimmediatelyprovideatriggersignalby assertingPRFSTART

within theBoardControlRegister.If theRIB fails to providethis signal,andthe

transmitteris otherwiseworkingproperly,thetransmitterwill assertRSR[0] to indicatea

first-level fault (FAULT1). This kind of fault (first-level) will also be generated if sensors

indicate the transmitter or receiver are not working properly. For example, the following

conditions will all initiate a first-level fault: transmitter or receiver outside of temperature

operating range, TWT high-voltage off, transmitter power low, or transmitter VSWR out

of range. If no faults are indicated, the transmitter will enter its normal operational state.

However, if some failure results in a FAULT1 state, the transmitter will attempt to reset

itself and enter the RADIATE state a maximum of three times. If the transition remains

unsuccessful after the three attempts, the transmitter will completely shut down, assert

RSR[1] to enter a catastrophic failure or second-level fault (FAULT2), and remain in this

state until power is cycled.

31

Table 3-2: Board Control Register - BCR[15:0]

Bit I Net Name Destination Pin # I

0

1

2

3

4

RSRDEBUGN PBCTL2 PAL 11

PIOROUTN PBCTL2 PAL 10

FREQINP PLL Clk Driver 6
ADCDIFF INAIS 1

PRFCTL PRFCTL PAL E 1

PRFSTART PRFCTL PAL E2

OPTPULW PRFCTL PAL B6

5

6

7 AGCSTART AGCCTL PAL 2

8 DSPINT0 DSPINT PAL 2

9 DSPINT 1 DSPINT PAL 3

10 DSPINT2 DSPINT PAL 4

11 DSPINT3 DSPINT PAL 5

12 LDPCTL 7-SEG DISPLAY 4

13 RDPCTL 7-SEG DISPLAY 10

14 DONE VME CTL2 PAL 11

15 NEWDWELL AGCCTL PAL 7

Function

Radar Status Register debug (0)

Programmable IO are Outputs (0) & Inputs (I)

Freq UP Select b/w STALO (1) & Local Osc (0)

Select Differential (1) or Non-diff (0) on ADCs
Select PRF in combination with PRF bit -

HI: 8.8/1.1 KHz LO: 4.4/2.2 KHz

Start PRF

Select Pulse Width in combination with the

PULSWlD bit - HI: 0.5 Its LO: 1.0/0.25 {as

Start AGC

DSP Interrupt Control Bit 0

DSP Interrupt Control Bit 1

DSP Interrupt Control Bit 2

DSP Interrupt Control Bit 3

Left Decimal Point Control

Right Decimal Point Control

Signal End of Acquisition

New Dwell Signal from DSP

Table 3-3: Radar Status ister - RSR

Bit]NetName [Source]Pin#1Function

0 FAULT1 J1 1

l FAULT2 J 1 2

2 PRES J 1 3

3 TROVTEMP J 1 4

4 TRUNTEMP J 1 5

5 RCOVTEMP J 1 6

6 RCUNTEMP J 1 7

7 TWTAST J I 8

8 STHEATDEL J 1 9

9 STDBY RAD Jl 10

I0 TXLPOW J 1 15

11 RSRVD

12 RSRVD

13 RSRVD

14 RSRVD

15 RSRVD

Fault #1 - HI: Fault LO: Normal

Fault #2- HI: Fault LO: Normal

Pressure- HI: Under LO: Normal

Transmitter Over Temperature - HI: Over LO: Normal

Transmitter Under Temperature - HI: Under LO: Normal

Receiver Over Temperature -

Receiver Under Temperature -

HI: Over LO: Normal

HI: Under LO: Normal

TWT Status - HI: Hi Voltage Off LO: Hi Voltage On

Status Heater Delay - HI: Complete LO: Delay

Standby/Radiate- HI: Radiate LO: Standby

Transmitter Low Power (-0.2 dB) - HI: Low LO:

Normal

32

During thenormaloperationalstateRADIATE, theRIB recordsstatusinformation

frequently(-3 secondintervals)andmonitorsRSR[9]for assurancethatall is well. An

RSR[9]statuschangefrom RADIATE to STANDBY might indicatea transmitteror

receiverfirst-levelfault dueto somerandomglitch;however,it couldalsoindicatethe

pilot hasturnedoff thetransmitter!To determinewhich is thecase,theRIB waits ten

seconds.If theeventwasa transientfault, theminorglitcheswill work themselvesout

during this timeandtheradarwill automaticallyreturnto theRADIATE state. If the

systemremainsin STANDBY for morethantenseconds,it is assumedthatthepilot has

turnedoff thetransmitteror thatacatastrophicsecond-levelfault hasoccurred.

Regardless,heRIB deassertsthetriggerandsignalstheE-6 hostcomputerto terminate

acquisitionby closingfiles.

TheRIB DSP32Cprocessorreceivesahardwareinterrupteachtime thetransmitterfiresa

pulse. Theseregularinterruptsform thebasisof internalprogramtiming andprovide

synchronizationamongall processors.Everyfive minutes,thetransmitteris switchedinto

acalibrationmodeby assertingCALIB of RadarControlRegisterZero (RCR0[3]).

Attenuationsettingsarethenreadfroma tableandappliedto thecalibrationattenuators

by writing to theRadarControlRegisterOne(RCR1). Presently,thosecalibrationvalues

stepfrom 0 dB to-120 dB in 10dB increments.

33

Table 3-4: Radar Control Re_ 0

Bit I Net Name Dest Pin # I

0 RSRVD

1 PULSWID J1 11

2 PRF J1 12

3 CALIB J 1 13

4 RECBW J 1 14

5 RSRVD

6 PHASESH0 J2 1

7 PHASESH 1 J2 2

8 PHASESH2 J2 3

9 PFiASESH3 J2 4

10 PHASESH4 J2 5

11 PHASESH5 J2 6

12 PHASESHLAT J2 7

13 RSRVD

14 RSRVD

15 RSRVD

Table 3-5: Radar Control Re

Bit I Net Name Dest

0 ATNA0 J2

1 ATNA 1 J2

2 ATNA2 J2

3 ATNA3 J2

4 ATNA4 J2

5 ATNA5 J2

6 ATNB0 J2

7 ATNB 1 J2

8 ATNB2 J2

9 ATNB3 J2

10 ATNB4 J2

11 ATNB5 J2

12 RSRVD

13 RSRVD

14 RSRVD

15 RSRVD

1

Pin #

8

9

I0

11

12

13

14

15

16

17

18

19

- RCR0[15:0I

Function

Pulse Width - HI: 0.25 Its LO: 1.0/0.5 [.ts

Pulse Repetition Freq - HI: 2.2/1.1 KHz LO: 4.4/8.8 KHz

Calibrate Mode - HI: Off LO: On

Receiver Bandwidth - HI: 2.2 MHz LO: 8 MHz

Phase Shifter Bit 0 - HI: 5.6 ° LO: 0 °

Phase Shifter Bit 1 - HI: 11.3 ° LO: 0 °

Phase Shifter Bit 2 - HI: 22.5" LO: 0 °

Phase Shifter Bit 3 - HI: 45.0 ° LO: 0 °

Phase Shifter Bit 4 - HI: 90.0 ° LO: 0 °

Phase Shifter Bit 5 - HI: 180" LO: 0 °

Phase Shifter Latch - HI: Q=D LO: Q=Qn

RCRltl5:0]
Function

I

AttenuatorABit0-HI: ldB LO: 0dB

Attenuator A Bit 1 - HI: 2 dB LO: 0 dB

AttenuatorABit2-HI: 4dB LO: 0dB

AttenuatorABit3-HI: 8dB LO: 0dB

Attenuator A Bit 4 - HI: 16 dB LO: 0 dB

Attenuator A Bit 5 - HI: 32 dB LO: 0 dB

AttenuatorBBit0-HI: ldB LO: 0dB

Attenuator B Bit 1-HI: 2dB LO: 0dB

AttenuatorBBit2-HI: 4dB LO: 0dB

AttenuatorBBit3-HI: 8dB LO: 0dB

Attenuator B Bit 4 - HI: 16 dB LO: 0 dB

Attenuator B Bit 5 - HI: 32 dB LO: 0 dB

34

Table 3-6: Board Status ister BSR

Bit .1 Net Name } Source Pin #

0 VMEQBAFN VMEQB 6

1 VMEQBAEN VMEQB 7

2 DATDQAAFN , DATDQA 6

3 DATDQAAEN DATDQA 7

4 DATDQBAF'N DATDQB 6

5 DATDQBAEN DATDQB 7

6 DSPINQAFFN DSPINQA 13

7 DSPINQAEFN DSPINQA 12

8 DSPINQBFFN DSPINQB 13

9 DSPINQBEFN DSPINQB 12

10 NGAINQFFN NGAINQ 13
11 NGAINQEFN NGAINQ 12
12 OGAINQFFFN OGAINQ 13

13 OOArNQE_ OOAtNQ 12
14 RNRNA HSXCVRA 14

15 RNRNB HSXCVRB 14

Function
i

VME Queue B Almost Full Flag

VME Queue B Almost Empty Flag

Data Destination Queue A Almost Full Flag

Data Desttination Queue A Almost Empty Hag

Data Desttination Queue B Almost Full Flag

Data Desttination Queue B Almost Empty Flag

DSPINQA Full Flag

DSPINQA Empty Flag

DSPINQB Full Flag

DSPINQB Empty Flag

NGAINQ Full Flag

NGAINQ Empty Flag

OGAINQ Full Flag

OGAINQ Empty Flag

Receiver Not Ready Bus A

Receiver Not Ready Bus B

3.2.2 Data Acquisition Board (ACQ)

Received echoes are sampled by dual 4 MHz four-channel 9U VME boards featuring 12

bits of resolution per sample. Each board operates under the direction of a DSP32C

digital signal processor chip whose job is to compute destination tags for each sample

which are then paired with the samples acquired by the A/D's as routing information. The

High-Speed Data Bus Controller (HSDBC) uses these tags to route each sample to some

desired location, often a processing-zone on the LMAP Unit Array Processor Board

(LUA-200), much like the Post Office uses address information on a letter to route it to

the desired house.

The software used to scatter EDOP raw data for reflectivity processing is provided in

Listing 2. A hardware interrupt notifies the program each time a pulse has been

transmitted. After each interrupt, the software queues up destination tags for all 436

range gates to be acquired this pulse. This is accomplished by reading a table of

35

predetermined addresses. Four processors are required for reflectivity processing; hence,

the first 109 tags route samples to Zone 0, the next 109 are routed to Zone 1, and so on.

After sufficient data for an entire dwell have been scattered for processing, the global

token (see §3.2.3) is passed to the LUA so that its results can be delivered from its output

queue.

3.2.3 LMAP Unit Array Processor Board (LUA-200)

The LUA-200 is a highly-parallel signal-processing board containing a Global I/O

Interface, Local I/O Interface, VME Interface, Input and Output Data Queues, and eight

linearly-mapped computational zones. The reader is referred to Figure 3-6 for a block

diagram explaining the relationship between these components.

Raw data arrive at the board for processing via two 40-bit bi-directional high-speed data

buses (HSDB) dedicated to the transfer of information between the ACQ and LUA

boards. Each bus is comprised of 32 data lines, 4 control lines, 4 lines for destination tags,

and runs at IA the system clock (10 MHz) to achieve a maximum throughput of 50

Mbyte/sec/bus.

Inter-zone communications is facilitated by hardware-based Input and Output data queues.

Each queue is a 40-bit x 512-word FIFO possessing a global and local side. The global

side of the queue is connected to the Global I/O Interface which manages the transfer of

information between the I/O queues and the HSDB. The Local I/O interface similarly

manages information transfer between the I/O queues and processing zones. Data (i.e. a

destination tag/data word pair) received from the HSDB by the Global Interface controller

are placed in the Input Data Queue of the appropriate bus where they remain until their

destined zone requests that they be read from the queue and transferred to the zone's local

memory. The data are removed from the queue and flexibly routed to the desired zone

36

i

T

l

l

DO lS'_l

(]"IAWJ.I

(lc_| LVOW'JH

A$1l't'_l.l

_ coo) i v_,t,-3M

¢ _.o.q

vj

_wtrvo

.:o 0o) "tL_ _<_,.o

-J ! Joqq)

_]tf _ovo

-_3l_ql

-Q t_JRil

(ZOOOYtL_Irl

_ mdm,w3.43z

-w_,mz

"04_Z

_]hlIVl

0 O0.pOV'l

- A.,_,ZOZ

003 Om'_oZ

WMI_

<],IIOZ

OO]:_IQaZ

W_j(3V'I
_.o_oaz

vA_o_

0o3:2rq_2

"]K)O^

_O,JQd

"LO4q]Jd

"i
I ..:

L

• LIS3_$

.X_V/Q

.3UU*_

.(]uO_l

(ICIO_V

(_0 O0)rVV

I511]01_

through a series of cross-point data switches on each board---the Local I/O Interface.

Because the queue is based on a FIFO architecture, they are read out in the same order

they are received. If a processing zone requests additional data and data destined for that

zone are not at the front of the queue, the zone will block or wait until such data are

available. We say that the input data stream is flow controlled.

When a zone is finished processing and desires to transfer information to another location,

it does so by writing the data and appropriate destination tag to the Output Data Queue.

To control the order is which output data are queued up, only one zone is given

permission to write at any given time. This permission or write arbitration is governed by

the use of a semaphore called the local token, and there is one local token for each local

bus. Any zone attempting to access the Output Data queue without possessing the write

access privileges granted by the local token will be held in a pending-access state until the

zone receives the local token from the current token holder.

After data are placed in the Output Data Queue, the Global I/O Interface reads the output

destination queue and passes its associated data word to the proper destination. If the

data are destined to another zone on the same board, the Global I/O Circuit merely places

them back in the Input Data Queue. If they are instead destined for another board, the

Global UO Circuit checks to see if the board is a global token holder. The global token

provides bus arbitration on the HSDB in a manner similar to the local bus so that only one

board in the system has access to the HSDB at any given time. If the board is possesses

the global token, the Global I/O interface removes data from the Output queue and passes

them to the HSDB Controller for transfer to the Global I/O Controller of the destination

board (via the high-speed data bus). If the board does not possess the global token, the

data remain in the Output queue until the global token is received by the current token

holder.

38

Threeoperatingmodesfor theLUA Board,theMaster,Slave,andLocal Accessmodes,

furthergovernGlobal I/O.

Master Mode allows write access to the High-speed Data Bus and is allowed only by the

Global Token holder. In this mode, the presence of data in the Output Data Queue

initiates a data transfer to the destination specified in the Data Destination Queue. Valid

destinations include the Data Input Queue of the same board, Data Input Queue of a

different board, or any global bus command (Figure 3-7).

Boards which do not possess the Global Token are considered to be in Slave mode and

will remain Slaves until the Global Token is relinquished by the Master. A Slave can

receive data from its Data Input Queue and additionally write to the Data Output Queue

as Local Token issues permit. However, no data will be read from the Output Queue until

the board becomes a Master by receiving the Global Token from the current Master.

In some cases it is desired to pass data only between zones of the same board. Because no

data are transferred over the HSDB, it does not make sense to restrict data flow with a

global token; however, a the Global I/O controller will not read the Output queue of a

Slave. To address this problem, a third mode, Local Access mode, is available. In Local

Access Mode, the board isolates itself from the HSDB allowing data to be passed through

the Output Queue back to the Input Queue without ever possessing the Global Token. In

this mode, the Global DMA Controller processes data from the Data Output Queue as

though the board was a Master---except that destinations to other boards are invalid. Any

data destined to different board will be lost. Similarly, any data transferred to a board in

Local Access mode over the HSDB will be lost. To enter Local Access Mode, the board

must first be the Global Token holder (i.e. Master). After setting HCR[1], the board must

39

O S 'NA 'ON OAROZON*IV *ICODE NODE ZONE FUNCTION OPERA TION OPERA TION

(HEX) (DEC) (DEC)

'00' 0 0 (000) DATA WR WR/RD

'07' 0 7 (007) DATA WR WR/RD

'08' 0 IVlASK REG WR WR/RD

"09' 0 CTLR REG WI_ WR/RD

0A 0 NODE "WR WR/RD

0B

0C 'ALL DATA BCAST WR BCAST WR

0D ALL MASK REG BCAST WR BCAS'F WR

0E

OF 0 * TOKEN PASS PASS

10 l 0 (008) DATA WR WR/RD
. it . .

17 I 7 (0015) DATA WR WR/RD

18 ! MASK REG WR WR/RD

19 I CTLR REG WR WR/RD

IA 1 NODE WR WR/RD

IB

1C ALL DATA BCAST WR BCAST WR

ID ALL MASK REG BCAST WR BCAST WR

IE

IF TOKEN PASS PASS

20 2 0 (016) DATA WR W RJR D
n n . n

27 2 7 (023) DATA WR WR/RD

28 2 MASK REG WR WR/RD

29 2 CTLR REG WI_' WR/RD

2A 2 NODE 'WR W R/R D

21]

2C ALL BCAST WR BCAST WR

2D ALL

DATA

MASK REG BCAST WR BCAST WR

2E

2F 2 * TOKEN PASS PASS

Figure 3-7: Data Destination Codes (courtesy of Martin Marietta)

pass away the Global Token. The board will remain ill Local Access Mode until resetting

HCR[1] at which time it will become a Slave.

Each of the eight linearly-mapped parallel processing zones is centered around an AT&T

WEDSP32C digital signal processor housed in a standard 133-pin square pin-grid array

(PGA) package. CMOS fabrication technology provides high-speed operation with low

power consumption and two execution units increase computational performance. The

Data Arithmetic Unit (DAU) utilizes four 40-bit floating-point accumulators to store

operation results and data type conversions. A 32-bit floating-point adder and 40-bit

floating-point multiplier work in tandem to jointly perform 25 million floating-point

multiply-accumulate operations per second (peak) when clocked at the maximum speed of

50 MHz. Integer operations, as well as control, logical, and data move operations are

conducted by a second execution unit--the Control Arithmetic Unit (CAU)----at a rate of

12.5 million instructions per second (MIPS). Memory internal to the processor

includes1536 32-bit words allocated in three 512-word banks. An external memory of

32K x 32-bit 20-ns zero wait-state static RAM per zone provides ample room for program

and data storage. Three 40-MHz LUA-200's are utilized by the EDOP data system

yielding an aggregate 480 MFLOPS of computational power for Doppler extraction,

reflectivity averaging, and automatic gain control.

3.2.4 Host Computer (E-6)

An E-6 Eltec single-board computer based on the 68030 microprocessor is utilized as a

host. This host is responsible for initializing various system registers at power up and

loading all DSP32Cs with software stored on a battery-backed non-volatile 8 Mb RAM

drive. Status information are additionally stored on this RAM drive by the E-6 which is

also responsible for archiving processed data sent to it via the VME bus during operation.

41

A 1.2 Gb Micropolis hard drive is currently used to store processed results, and a 5 Gb

8505C Exabyte streaming tape is being evaluated for future use.

42

r

Chapter 4 - Algorithm Developme.nt and Analysis

4.1 Reflectivity Processing

Conventional weather radars relate the received echo power from a precipitating target to

its radar reflectivity factor, Z, through a special form of the radar equation applicable to

distributed targets. The radar reflectivity factor can then be empirically related to the rain

rate. Nevertheless, the problem of accurately assessing Z based on power measurements

is not without difficulties. As wind turbulence shuffles the hydrometeors, backscattered

microwaves undergo constructive and destructive interference causing the magnitude of

received power to vary greatly. To effectively estimate the true mean received power, one

must average many power samples to reduce the variance of this fading process.

4.1.1 The Need for Reflectivity Averaging

To better illustrate the nature of fading, let the receiver input voltage due to the ith

scatterer be expressed in polar form as:

Vi e j*'

where V i is its magnitude and #i is the instantaneous phase. We are normally interested in

the amplitude and phase of the complex voltage, V, due to a collection of scatterers and

can easily express this as a superposition of received voltages from individual scatterers:

bl

V = _ Vie jc}i
i--I

43

Of course, the sum of a complex-number series is itself a complex number, so it is

convenient to express the complex voltage, V, in terms of an envelope, V e, and a phase

angle O:

V = We e j¢

If the number of randomly phased scatterers is sufficiently large, the central limit theorem

provides reasonable assumption that the received voltage is a bivariate Gaussian

distribution of the form

p(V_,_)= V_ e_V_/2o_

The individual density functions for V e and O can then be determined by "integrating out"

the opposing variable.

2x Ve
p(V_) = j p(V_ ,d_) dO = --Te -v_/2°_

o (_"

p(O0) = _p(V,,C_)dV_ 1
o 2r_

It is interesting to observe that p(Ve) is the familiar Rayleigh distribution whose first two

moments are given by

m

V_ = 2 o z

44

Thevariancecanthenbedeterminedasthedifference.betweenthesecondmomentandthe

squareof thefirst:

02v,=_'_2-V_= 2--_- o =0.429o 2

Assume the power in the envelope voltage is developed across a 1-ohm resistor. The

envelope power can be expressed as the square of the envelope voltage.

p= V 2

If we further note that the differential power is related to the differential voltage as

dP -- 2 Ve dVe

then the Rayleigh distributed envelope voltage can be converted to a distribution for

power by transforming the voltage variable to obtain an expression for the distribution of

power at the radar receiver input

1
p(P)dP = p(Ve)dV¢ = T---;e -P/2°_

zo"

Notice that the power is distributed exponentially whereas the voltage was Rayleigh

distributed! The first two moments of the exponential power distribution are easily seen

to be:

P=2o 2

p2 = 2 _2

45

revealingaclassicpropertyof exponential distribution_ wherein the standard deviation is

equal to the mean!

_= p2__2= p.

By now it should be evident that the power fluctuations due to fading can be significant

and some type of estimator based on multiple observations must be employed to reduce

this variance to acceptable levels. Before we can address that issue, however, we must

follow the received pulse through the receiver to understand its effects on the fading

statistics. Weather targets, especially convective targets, exhibit a range of echo strengths

exceeding 80 dB. This rather large variation places tough demands on the receiver design

and frequently logarithmic detectors, whose output signal is proportional to the logarithm

of the input power, are used to minimize receiver saturation. Let L be defined as input to

the log-receiver, expressed in logarithmic form, where P is the instantaneous,

exponentially-distributed received power:

L = lOlog(P/p,)

The reference value PI is chosen to be 1 mW so that the units of power-level L are dBm.

The mean power can be similarly written:

Lo = 10 log(P/p,)

Certainly, the logarithmic transfer function compresses the range of output, but

additionally has less intuitive effect of adding a statistical bias to the measurement. To see

that this is true, it is again necessary to transform the power variable using

46

L-Lo = lOlog(P/P)

As might be expected, the distribution of log-power is no longer exponential but is instead

a slight variation given by (Sauvageot, 19xx)

p(L) = m exp[m(L - Lo) - e m/L-t')]

with m = In(10)/10. The first two moments, can be obtained by integrating the density

function

E{L} = _L. mexp[m(L- Lo) -em(L-L_)]dL

E{L :} = _L_ mexp[m(L - Lo) - em(L-t_)]dL

These equations were numerically integrated to determine the mean and variance of the

detected spectrum. By definition, the true power mean is L o. However, the expected

value of L is given by E{L} = Lo-2.51, indicating that the estimate is statistically biased.

This means that one must add 2.51 dB to the estimate to get the true mean. The variance

is nearly constant at 31 dB.

4.1.2 An Averaging Algorithm for the DSP32C

Clearly, the power estimate must be improved if it is to be scientifically useful. A

particular type of estimator known as the maximum-likelihood estimator was chosen to

provide mean-power estimates for the EDOP application. It works as follows: Let

f(x t x,_10) be the joint probability density function of the random variables X t, X z X_,

where 0 is the parameter to be estimated---in this case, the mean power. This function is

47

calledthe likelihood function and represents the likelihood or certainty that the values xl,

x 2..... x, will be observed when 0 is the true value of the unknown power mean. It is then

reasonable to assume that 0 can be estimated by choosing its value such as to maximize

the likelihood of observing x_, x 2..... x,. In other words, the maximum-likelihood estimate

is defined to be that value of 0 which maximizes the likelihood function.

The maximum-likelihood estimator for the mean of an exponential distribution is given by:

To generate estimates of the mean echo-power received by EDOP, a real-time embedded,

parallel algorithm was developed for the EDOP data system to average a predefined

number of samples, N, and archive the results. A listing of this software is included in

Appendix A.

To implement the algorithm, two constraints were observed to maximize the performance:

1. Keep the pipeline full

2. Minimize use of memory

As previously mentioned, the DSP32C is a pipelined digital signal processor. Pipelined

architectures execute their instructions in assembly-line fashion to realize superior

performance. Each stage of the pipeline completes a small part of the instruction being

executed in a fraction of the time needed to complete execution of the entire instruction.

Moreover, each stage is connected together to form a pipe so that instructions enter the

48

pipeatoneend,undergovariousstagesof executionia eachpipesegment,andexit other

end.

Throughput of the pipeline is the rate at which completely executed instructions exit the

pipeline. Because multiple instructions are overlapped in execution, an instruction can exit

the pipe with each machine cycle resulting an increase in CPU performance directly

proportional to the length of the pipe. However, superior performance is sustained only

so long as the pipeline is kept full. If the pipeline is not kept full, some segments will be

idle when they could be executing instructions and the throughput will decrease. As this

bubble of inactivity propagates through the pipe and exits the other end, one or more

machine cycles will be wasted while the CPU waits for the next instruction to exit the

pipe.

The data arithmetic unit (DAU) of the DSP32C employs a four-stage pipeline to perform

25 million floating-point operations per second. Its instruction set revolves around a

multiply-accumulate operation wherein a floating-point multiplier and adder work in

parallel to perform computations of the form a = b + c*d. Each DAU multiply-accumulate

operation involves three floating-point operands. Two of these are multiplied together

and added to the third. The final result is stored in an accumulator as an intermediate

result to be used in subsequent operations and can be additionally stored in memory or

sent to an I/O unit.

The DAU supports several multiply-accumulate instruction formats. However, for the

purpose of discussing the DSP32C pipeline, only one format will be examined:

Z=aN=aM+Y* X

49

This instructionis executedin fourstagesasfollows: .

1. XY fetch

2. multiply Y * X

3. accumulateproductwith aM

4. write resultto memory(optional)

If severalmultiply-accumulateoperationsareexecutedbackto back,theDSP32Cfills the

pipelinesuchthatonestageof eachinstructionis completedeverymachinecycle. For

example,considerthefollowing blockof multiply-accumulateinstructions:

1. aN=aM+Y I+X l

2. aN =aM+ Y2 +X 2

3. aN= aM+Y3 +X 3

4. aN=aM+ Y4+ X 4

5. aN=aM+Y5 +X s

where XI--X 5 and YI--Ys have been subscripted to aid visualization of the data flow

through the pipeline. During each machine cycle, the four instructions will be in various

stages of simultaneous execution within the pipeline:

Table 4-1: Pipeline Data Flow

Cycle I Segment 4

1

4

5

6 write_

7 write 4

8 writ%

Segmen! 3

accumulate1

write_ accumulate:

write,,, accumulate 3

accumulate 4

accumulate_

Segment 2

multiply t

multiply2

multiplya

multiply4

multiply_

Se[[ment 1

XY fetch_

XY fetch7

XY fetch_

XY fetch4

XY fetch_

50

It shouldbeevidentfrom thetablethattheintermediat#accumulatedresultfrom thefirst

instructionwill notbeavailablefor usein subsequentmultiplier operationsuntil Cycle4.

Hencethereis a latency of three instructions before the intermediate results from the first

instruction can be used. In other words, if it is desired that the intermediate results of one

instruction be used in a subsequent instruction, no less than three unrelated DAU

instructions must be executed before the intermediate results are available for use. Such

latencies are inherent in pipelined architectures and the DSP programmer must design

software carefully, keeping the pipeline full to maximize the throughput.

To begin the actual coding of software for this digital-signal processor, a slightly different

approach is used than for general purpose CPUs. In this approach, the DAU or floating-

point unit is considered to be the central processing unit of the DSP32C while the CAU is

viewed as a co-processor to generate addresses and perform occasional logical operations.

To fully utilize the processing power of the parallel array of DSP32Cs, consideration must

be given to how the processing will be split among the processors while maximizing the

pipeline efficiency. For the reflectivity averaging software, it was decided that each

processor would perform the same estimation algorithm on a subset of the range gates to

be processed.

After each RF pulse is transmitted, three A/D's provide range-gated samples of received

power on each of three channels----nadir antenna, forward co-polarized antenna, and

forward cross-polarized antenna. These echo power measurements are sent to the data

system via both 32-bit HSDB buses, with two 16-bit channels packed into a single 32-bit

word per bus. The reflectivity program expects that each word read from HSDB FIFO A

contains channel one in the most-significant 16 bits while channel two is stored in the

least-significant 16 bits. Similarly, channel three is expected to reside in the most-

significant 16 bits of FIFO B; however, channel four is ignored. A typical flight

51

configurationis to placetheNadirCo-pol.onchannel.one,theForwardCo-polon

channeltwo, andtheForwardCross-polonchannel3. Theserange-gatedmeasurements

areplacedinto abuffer for accumulationby thefollowing zero-overheadcoreloopof

reflectivityDSP32C-assemblercode:

do 5, r18
al = float(*rl0++)
a0= float(*rl0++)
a2= float(*rl l+r15)
*r6++ = a3 -- *r6 + al

*r5++ = a3 = *r5 + a0

*r7++ = a3 = *r7 + a2

The first line indicates that the following six (5+1) lines of code are to be executed N

times, where N is the value contained within hardware register r18 at the time of

execution. In the buffer, addressed by hardware pointers rl0 and rl 1, the received-power

samples remain packed together with two channels per word. The next three instructions

in the loop extract the 16-bit integer samples from the buffer and convert them to a 32-bit

DSP32C proprietary floating-point format, placing each result in a 40-bit accumulator. In

this example, samples from channel one are placed in accumulator al while samples from

channels two and three are placed in accumulators a0 and a2, respectively. The remaining

three instructions accumulate the measurements into separate range-gated tables addressed

by hardware pointers r5, r6, and r7. At the end of each integration period, the

accumulated results are placed in the Output queue along with appropriate destination

tags sending the results to the VME bus for subsequent archival by the E-6 host. A pass

global-token command is then queued to return the global token to the ACQ board so the

HSDB Controller can deliver additional samples to the LUA for processing.

52

4.1.3 Number of Independent Samples

The reflectivity algorithm used by EDOP averages a series of observations, Li, for one

second to reduce the variance to acceptable levels. However, the observations are

partially correlated, so to determine how much the variance is reduced through averaging,

one cannot simply reduce the variance by the number of averaged samples order. Instead,

the variance is reduced by the number of effectively independent samples used in forming

the average. Traditionally, samples are considered to be independent when the correlation

between samples approaches zero.

Several authors (e.g. Marshall and Hitschfeld, 1953; Sauvageot; Walker et. al, 1980) have

attempted to develop receiver models for the purpose of establishing the rate of sample

decorrelation. For example, Kerr (1951) provides the following relation between the

normalized input and output correlation functions of a logarithmic receiver:

Here, P_og(Z) is the desired normalized output correlation and p(x) is the correlation

function of the input process. If the input signal is assumed to be Gaussian correlated,

2 -I

p(x) = exp(-q:/2 o;),

then the output signal is correlated as

6

P'°' (x) = _ m,,,_"m-2 exp(-m x2/c_)

53

Onedefinitionfor thenumberof independentsamples.isgivenasaratioof thevarianceof

asinglesampleto thevarianceof thesampledmean(Lee,1961;Nathanson,1969).For

discretesampling,(Walkeret.al, 1980)give

1 2 Nq-I

=w+_ _ (Nq-Kq)Pq(Kqlq)
N?i Nq Nq2z,=l

where Nq is the number of samples spaced lq apart where q represents time. Thus to

determine the number of independent samples, N i, one merely substitutes the appropriate

correlation function.

These efforts are of somewhat questionable utility because it is so difficult to specify the

meteorological processes that are viewed by the airborne receiver. Highly turbulent

conditions will certainly cause rapid decorrelation between samples and the ensuing large

number of independent samples will result excellent mean-power estimates for even short

integration periods. On the other hand, stratiform conditions with weak air motions might

push decorrelation times on the order of seconds so that observed sample decorrelation

results primarily from aircraft displacement. In view of the consequence of incorrectly

specifying the observable meteorology, it is best to be conservative.

For airborne radars, it is generally accepted that pulses are decorrelated in the time it takes

the aircraft to move one beamwidth. The EDOP radar flies with 0.76 m antennas on an

ER-2 platform possessing an airspeed of approximately 200 m/s; therefore, pulses are

expected to decorrelate in -4 ms due to aircraft motion, providing a minimum of 250

independent samples during a 1-second integration period. Again, certain meteorological

conditions (e.g. severe convective regions of a storm) can decorrelate the pulses at a faster

rate. It seems the best way to determine independent samples obtained on a particular

54

flight is to examinethetakenmeasurements.If thecotaservativedecorrelationestimateof

4 msis used,theexpectedpost-integration(1 second)varianceis

,2vg= .2cr...._= 31dB- 101og(250)= 7.02dB
250

4.2 Doppler Processing

The EDOP radar is primarily intended to study deep, well-developed, precipitating

systems where both horizontal- and vertical-wind velocities can exceed 40 m/s. The

desired accuracy of velocity estimates is on the order of 0.5-1.0 m/s. However, errors

arising from signal-processing operations and aircraft platform instabilities can induce

significant errors in the vertical velocity that are sometimes comparable to the

meteorology of interest (Heymsfield, 1989). The principle sources of velocity

measurement error for the EDOP system result from uncertainties in the auto-covariance

estimator and antenna pointing errors as discussed in §4.2.3 and §5.2.

4.2.1 Autocovariance Processing

The autocovariance Cxx(t_,t2) partially describes the time-domain structure of a random

process X(t) and is defined:

Cxx (t,, t2) - Rxx (tl, t2)- _x (t,)Px (t2)

where the autocorrelation Rxx is given by the expected value of the product of the process

at two times, tl and t2:

Rxx (t t , t 2) -- E{X" (t i)X(t 2)}

55

Looselyspeaking,aprocessis calledstationaryif its distributionfunctionsor certain

expectedvaluesareinvariantwith ashift of thetimeaxis [Shanmugan,1988]. If the

autocorrelationfunctiondependsonly on thetime difference"r but is not explicitly a

function of times t] and h, and the mean is constant, then the process is said to be wide-

sense stationary.

Rxx(_) ---E{X'(t)X(t + x)),

E(X(t)J = la._= constant,

The autocorrelation function of a stationary random process tells us something about how

rapidly we can expect the random signal X(t) to vary as a function of time. If the

autocorrelation function rapidly decays to zero, we can expect the signal X(t) to vary

rapidly with time. If the autocorrelation decays slowly to zero, then X(t) will be a slowly

changing process. Likewise, a process X(t) with periodic components will exhibit a

periodic autocorrelation. Thus, we may correctly conclude that the autocorrelation

function provides some information describing the undedying spectral content of the

random process. The exact relation is given by the Wiener-Khinchine relationship which

states that the frequency-domain power distribution or power-spectral density of a random

process X(t) is given by the Fourier transform of its autocorrelation function:

Sxx(f) = F{Rxx(X)} = _Rxx(X)e-J2atd'c

For any given range gate, the receiver produces a series of noise-corrupted complex

voltage samples, V(kTs), separated by the interpulse period, Ts. Each sample can be

written as the sum of signal and noise:

V(kT.) = V_+nk, k=0,1 M-1

56

ThesignaltermcanbealternativelyexpressedasaDopplershiftedweather-echosignal

whosespectrumis centeredaboutzerofrequency:

V(k Ts)= skej_'kr'+ nk

Theautocorrelationfunctionof theprocessis therefore

Rvv(mT_) -- E{V" (k Ts)X[(k + m) T_]} = Sl_(m T,) e j'_,mr'+ NpS,.

where Np is defined to be the mean noise power, p is the normalized correlation function,

and 8_ is 1 for m = 0 and zero elsewhere. The difficulty in evaluating this autocorrelation

function centers around determining the normalized correlation function. An easier

alternative is to determine the autocorrelation directly from the power spectral density by

inverting the Wiener-Khinchine equation above:

Rxx(Z) = F -I {Sxx(f)} = jSxx(f)eJ2'atdf

For the purpose of determining statistical estimators, it is both convenient and reasonable

to assume that the power spectrum has a Gaussian shape:

('o-_)2_ 2N.T,,
S exp +

Substitution yields

57

Rvv(mTs)=Sexp -8 rto T_ ej4rzmvdX+Np_m

This autocorrelation function can then be compared with the one above to identify the

normalized correlation function as:

0,m ,

At this point, it should start to become evident that if the complex autocorrelation function

of the random process is known, the mean velocity can be obtained from its argument!

4r_mT5
arg[Rvv (m Ts)] = , m _ 0

Z.

The simplest case is to solve for the mean velocity using a single time lag (m = I).

resulting velocity estimate is then given by:

The

5 = (_,/41t T,) arg[Rvv (T._)]

This well-known autocovariance or pulse-pair estimator is applied to each range-gate to

provide estimates of the Doppler velocity. This algorithm was first described by Rummier

(1968) and has since become the primary Doppler velocity estimator used by the

meteorological community. A spectral-width estimator can also be derived as a function

of the complex autocorrelation function and is based on the ratio of lag- 1 and lag-2

estimates (Srivastava et al., 1979):

_z In R(T,)o z = __
24 _ZT_

58

Thenewvarianceestimatoris of comparablequality to its morepopularlag-1/lag-0

counterpart(Benhamet al., 1972;SirmansandBumgarner,1975)butdoesnotexplicitly

requireanestimateof thesignal-to-noiseratio (SNR):

CY_d--
8_2T_ 1 IR(T') (I+SNR-')]

Interestingly, the new variance estimator of Srivastava can be combined with the old one

to provide an estimate of the SNR itself based on all three lags. The SNR can then be

used as a statement of confidence for the reliability of these estimates:

SNR =

[R(0){R(2T,)'/3[-[R(T,)I 4/3]

4.2.2 DSP32C Implementation

Doppler processing of the four linear channels represents the bulk of computations to be

performed by the EDOP data system and centers around the computation of the complex

autocorrelation function as described in §4.2.1:

, 1Vp- 2 2_T,

Z i is the received complex echo-voltage of the ith pulse, _. is the transmitted wavelength, N

is the number of pulses per dwell, and T s is the interpulse period.

59

Theautocon'elationis essentiallyaseriesof complex_ultiply-accumulateoperationsand

is ideally handledby theDSP32Cfloating-pointDSP. Considerthe lag-1autocorrelation

for adwell of N pulses:

N-I

R(T,) o, Y. Z_,Zp÷,,
p=O

p=0,1 N-I

Both sides of the equation can be expressed as real and imaginary components:

N-I r _'r
I(T_)+jQ(T0 = _ [Ip+jQn| [Ip_-,+jQp,l]

p=0 t-a

= _' [[p-j Op][Ip+, + j Qp+t]
p--O

N-1

= E Ip Ip.i - j Ip÷j Qp + j Ip Qp÷, + Qp Qp÷l
p=O

Collecting terms,

N-I

I(T,) = '9".IpIp+,+QpQp_._
p*O

N-I

Q(T_) = 2 IpQp+, - Ip,, Q_
p=O

The lag-0 and lag-2 autocorrelation products are computed in a similar manner and are

summarized below:

60

N-I

12 . t'x2I(O)=Z p*_p
p=O

Q(0) =0

N-I

I(Ts)= E Iplp+t+QpQp+l
p=O

N-I

Q(Ts) = X Ip Qp+, - Ip÷tQp
p=O

N-I

I(2T,)= Y, IpIp.2+QpQp+2
p--O

N-I

Q(2T_)= X IpQp+2-[p+2Qp
p=O

To implement the algorithm in DSP32C assembler, it is again necessary to design the code

so that the pipelined architecture of the CPU is optimally utilized. Shown below is the

fourteen line core of EDOP's pulse-pair code (the complete listing is contained within

Appendix B) which is used to accumulate autocorrelation products as described above. In

flight, pulses will be correlated for a relatively long period of time, say, one-half second.

At EDOP's maximum PRF of 4400 Hz, 2200 pulses will be correlated for each range gate.

This loop correlates the 2200 pulses in small blocks to provide optimum utilization of the

pipeline, accumulating the I and Q intermodulation products needed for the first three

autocorrelation lags:

do 12,r16

a0 = *r6++

al = *r9++

hop
a2= *rl +a0* a0

*rl=a2=a2+al*al

a2 = *r2 + a0 * *r7

• r2 = a2 = a2 + al * *rl0

a2 = *r4 - a0 * *rl0++

• r4 = a2 = a2 + al * *r7++

a2 = *r3 + a0 * *r8

• r3 = a2 = a2 + al * *rll

a2 = *r5 - a0 * *rll++

/* IpPrev */

/* QpPrev */

/* latency... */

/* a2 = I0 + Ip ^ 2 */

/* I0 = Ip ^ 2 + Qp ^ 2"/

/* a2 = I 1 + Iplp+ 1 */

/* I1 = a2 + QpQp+l */

/* a2 = Q1 - IpQp+l */

/* Q 1 = a2 + Qplp+l */

/* a2 = I2 + Iplp+2 */

/* I2 = a2 + QpQp+2 */

/* a2 -- Q2 - IpQp+2 */

61

*r5 = a2 = a2 + al * *r8++ /* Q2 = a2 + Qplp+2 */

Hardware pointers rl--r5 point to range-gated tables where the accumulated

intermodulation products are kept. Often the total number of pulses being processed is

too large to simultaneously store them in memory. Therefore, a subset of these pulses is

pulled into memory, processed, and then discarded so that an additional subset may be

accessed. To ensure continuity of processing between the subsets, the last three pulses

from each subset must be retained in memory as each new subset is created. These

retained pulses are addressed by pointers r6----r 11.

To determine the load (i.e. number of range gates and subset size) placed on each

processor, simulations of the completed algorithm were run to calculate the number of

instruction cycles needed to execute the algorithm for various load configurations.

4.2.3 Pulse-pair Velocity Estimate Uncertainties

An expression for the variance of the pulse-pair velocity estimate is given by Zrnic (1977)

for correlated but spaced pairs

vat(G) = K2132_2T_O2(T_)] -I{M-/[I-Oz(T,)] X

M-I

X F_ O2(mT)(M-Iml)+N2/MSZ+(2N/MS)[I+o(2T,)(1/M-1)Sr_T,.O]}
m=-(M-I)

where M is the number of sample pairs, and T is the spacing between pairs. If a Gaussian

spectrum is assumed, this expression can be approximated by

var(a3) =)_2 [32_2 T_,O2(T,)I-t {[1 - p2 (T,)] Td2 G,,, Tx/'_ + N2/$2 + 2(N/S) [1 + p(2 T,) 8r_r,.0]}

62

--4

For large signal-to-noise ratios, narrow spectrum width, s, and contiguous pairs, this

expression further reduces to

var(6) = _,, _,/(8M T,_¢_')

To illustrate the quality of this estimator, consider the following example based on a 3 cm

radar. In a convective storm, a typical spectrum width of 5 m/s would result in a velocity

estimate uncertainty of 0.047 m/s when integrating 1000 pulses at a PRF of 4400 Hz.

These equations are derived using perturbation analysis. For very narrow spectrum widths

or low signal-to-noise ratios, a large number of pulses must be integrated to obtain valid

results. Specifically, the following two conditions are necessary to ensure validity of the

estimated variances:

2xM 6., >> 1,

p2(T_)M >> (N/S+I) 2

The first condition expresses the requirement for a large number of samples whereas the

second condition ensures that the arg[R(Ts)] is small compared with 2r¢.

63

Chapter 5 - Conclusions

5.0 Status of Software Development

The EDOP radar made it's first successful flight during the CAMEX experiments at the

Wallops Hight Facility in September 1993. In this flight, the real-time reflectivity

algorithm was tested, and the inital results are encouraging (Figure 5-1). Though the

real-time Doppler algorithm was not tested in flight, it has been thoroughly simulated in

the lab and appears to be properly implemented. Additional flights are planned at Wallops

for the summer of 1994 in which the Doppler algorithms will be tested for the first time in

the operational mode.

Additional work must be completed before EDOP is fully meets the operational design

goals specified in the original proposal. Perhaps the most important remaining task in

completion of an automatic gain control (AGC) algorithm to increase the effective

dynamic range of the system. This will be particularly important for Doppler processing

because the linear coherent detectors are easily saturated.

5.1 Automatic Gain Control

One solution to this problem involves the implementation of hardware to perform

sensitivity-time control and software to provide global gain control to compensate for

gradual variations in the mean reflective echo.

Sensitivity time control (STC) is a method used to avoid saturation of the receiver by

strong returns at short ranges without compromising receiver sensitivity at longer ranges

(Figure 5-2). After each pulse is transmitted, the receiver gain, which was initially greatly

reduced, is increased with time to match the decrease in amplitude with range due to

spreading. Over a range of 30 km, this amounts to an increase in receiver sensitivity by

roughly 70 dB. Hence, maximum sensitivity is provided to enable detection of the

64

NASA ER-2 DOPPLER RADAR

Forward and Nadir Reflectivity
5 October 1993

E

UJ

Z
-<

a_

11

14

17

Forward
38

$2

26

20

14

8

2

-4 [

-I0 dBZ]

kid

Z
-<

11

14

17

2O
0 1'0 2'0 3"0 4'0 5() 6'0 7'0 8'0 9'0

DISTANCE [km]

Nadirs8

32

26

20

14

8

2

-4

-10 dBZ

_ Convective clouds with a trailing stratiform region observed by the ER-2

Doppler Radar (EDOP) on 5 October 1993 during the Convection and

Atmospheric Moisture Experiment (CAMEX). The top panel shows
- reflectivity data (dBZ) from the forward looking antenna (30 ° off nadir)

and the bottom panel shows the corresponding reflectivity data from the

- nadir viewing antenna. The forward image has been transformed to the

coordinate system of the nadir looking antenna.

The surface return is near 20km range and the "bright band" is near 15km.

Each x-axis division is approximately 9km along the flight path. The thin

line of enhanced reflectivity seen at 17km range on the forward image is

an artifact that will be removed in future flights by modification of the
radar hardware.

Figure 5-I: Convective clouds observed during CAMEX (courtesy Jeff Cayior

L

SENSITIVITY TIME CONTROL

At low PRFs, saturation of the receiving system by strong

return from short ranges is commonly avoided without loss of

detection sensitivity at greater ranges through a feature called

--sensitivity time control, STC.

Thereafter, the increase in sensitivity is continued by lowering

the detection threshold until the noise limit is reached--i.e., to

the point where the threshold is just far enough above the mean

noise level to limit the false-alarm probability to an acceptable

value.

.=

RANGE _ R_u

After each pulse has been transmitted, the system gain, which

initially is greatly reduced, is increased with time to match the

3ecrease in amplitude of the radar return wilh range. Maximum

jain is usually reached well before the end of the interpulse

"--period.

MAXIMUM RECEIVER GAIN

IS REACHED

,rivl. LIM,.

/ OUE TO NOISE

.=

Z

g

TIME _ ,_-

<

,.,___j. '{ H RE SHOLD

-J _" _7/__
SLC (After STC) I _

/

r,Lllllhl,llll l ,JJ,|,llkl{t rltI,LlU
TIME _ T

Thus, maximum sensitivity is provided at long ranges, where it

is needed to detect the weak echoes of distant targets, while

the strong return from short ranges is prevented from saturating

the system,

STC may be applied at various points in a system. From

whatever point it is applied, it helps prevent saturation in all

following stages.

M,Met

LO

STC APPLIED HELPS

HERE HERE

STC APPLIED

HERE

HELPS

• " ' " " • " HERE

Figure 5-2: STC concept (Stimson, 1983)

weakest echoes near the surface without saturating the receiver by strong echoes at higher

altitudes.

If necessary, the dynamic range of the system can be further increased by implementing

digital automatic gain control (DAGC). This feature monitors the output of the A/D

converters to build a continuously updated profile of the average receiver output. On the

basis of the profile, embedded software produces a gain-control signal that is applied to a

set of IF-attenuators ahead of the IF linear-detectors. A Kalman filter might be used to

track the dc-level of the linear-detector output and center it within the dynamic range of

the A/D converters.

Additional resolution in range is possible by increasing the A/D sampling rate to 4 MHz

from 2 MHz and narrowing the pulse width to 0.25 Its. These changes would allow an

improved resolution of 37.5 meters or could be used to increase the number of effectively

independent samples through range averaging.

Additional test flights must be taken to thoroughly calibrate the radar system. These

flights can be easily conducted up and down the coast of California over the ocean.

5.2 Antenna Stabilization

The Doppler velocity measured by an airborne radar is given by the dot product of the

aircraft-velocity vector with the antenna-pointing vector. This product may then be

related to the three-dimensional air-motion vector by transforming the aircraft body-fixed

coordinate references to earth-fixed coordinates. Figure 5-3 shows the relation between

the two coordinate systems. Heymsfield (1989) develops this transformation by first

expressing the aircraft body-fixed coordinates as a linear transformation of the earth-fixed

coordinates. It should be understood by the reader that such a transformation neglects the

67

2nd-ordereffectsthatresultfrom thetransformationb_tweenrotatingandnon-rotating

referenceframes.This sectionwill insteadassumethattheaircraftundergoesrotation

beforethemeasurementsaremade.

To describe the orientation of the aircraft relative to an earth-fixed coordinate system, it is

sufficient to specify a three-dimensional transformation matrix that relates the two

systems. The transformation is carried out by three consecutive rotations about the yaw-,

pitch-, and roll-axis, respectively. Emphasis is placed on the term consecutive because

the order in which they are carried must be consistent; these rotations do not obey a

commutative property as demonstrated through Figure 5-4.

Let the earth-fixed coordinate system be defined as the vector (x e, ye, z e) and the aircraft

body-fixed coordinate system be defined as the vector (x a, Ya, Za)"

Then it is possible to specify a rotation matrix A such that:

ixal xely, = A y,

z. t.z_)

To transform the earth-fixed coordinates to the aircraft, the following rotations are applied

in order:

1) Rotate coordinate system (xl, yl, zl) about the z I axis over an angle _ as

demonstrated in Figure 5-5. This angle is referred to as the heading or yaw angle. Note

that earth-fixed system has been renamed from (x e, y_, z_) to (x l, Yt, zt) for the purpose of

this rotation.

68

x2= x_cos_1/+Y_sin

Y2= Ylcos_ - x_sin

Y2 L-sin_ cos_/dLY_d

2) Rotate coordinate system (x 2, Y2, z2) about the Y2 axis over an angle 0 as demonstrated

in Figure 5-5. This angle is referred to as the pitch angle.

x3 = x2cos0-z2sin0

z3 = z2 cos 0 + x: sin 0

[x,]=[_osO-sinoIFx_]z3 LsinO cosOJLz2j

3) Rotate coordinate system (x 3, Y3, z3) about the x 3 axis over an angle _ as demonstrated

in Figure 5-5. This angle is referred to as the bank or roll angle.

Y = Y3cos _ + z3 sin

z = -y3 sin 0 + z3cos_

[_]=[co,, _i,-,,l[y_lL-sin¢ cosOJLz,j

Therefore, the combined operation on the three-dimensional earth-fixed system appears as

ix,1[io oifcos0osin01rcos olrx ly, = cos¢ sin¢ 0 I 0 //-sin_, cos,, o//yo /

z, -sine cosCJLsinO 0 cosOJk o o lJLz.J

69

X

F,IS

XYZ BODY FI×ED

X'YIZ j EARTH FIXED

I

(ROTAT ING)

(,,NO N - ROTATING

INERTIAL)
zl

yi

Figure 5-3: Relationship between rotating and inertial

coordinate systems (Roskam, 1979)

For meteorological purposes, it is convenient to define the earth-fixed coordinate system

such that x e points east, Ye points north, and ze point up. Likewise it is convenient to

define the aircraft body-fixed system such that x, points out the nose of the aircraft, y,

points out the right wing, and za points downward from the aircraft belly as depicted in

Figure 5-3. Furthermore, the aircraft inertial navigation system reports the heading angle

relative to North. The result of this is that, for zero angles of heading, pitch, and roll, the

aircraft will be heading north. Therefore, the rotation matrices must be further modified to

correctly transform the earth-fixed system to the body-fixed system.

To do this, it is necessary to rotate the earth-fixed system by -90 ° in addition to the

heading angle, _. This is accomplished by replacing _g in the above matrices by -_-90 °.

Next, one must pitch the earth-fixed system by 180 ° in addition to the pitch of the aircraft

so that the z-axes of both systems will be correctly aligned. This is accomplished by

replacing 0 in the above matrices by 0-180 °. These matrix modifications effectively align

the two coordinate systems in the default state (no heading, pitch, or roll angles).

ix]ii0 0 oS0Osin01Esin cos 01,x,Ya = cos_ sinO 1 0 Co_g -sin_ 0//y /
z, -sinO cos0J[.-sin0 0 -cos0 0 l.][_z_.]

The rotations about each axis are then combined to give the rotation matrix, A:

h

I cos0sin _t
sin 0 sin _ sin _g + cos _ cos _g

cos _ sin 0 sin _g - sin ¢ cos _g

cos 0 cos

sin 0 sin _ cos _- sin _gcos

cos ¢?sin 0 cos _g + sin _ sin _g

sin 0]

- sin _ cos 0 [

-cos cos0J

71

ROTATION SEQU£NCE I ROTA'TIOkl C_E(_UENCE

ROTATE -90 ° Z I'

ROTA'TE +_0 o_ ___

ABOUT Y ABOUT

Z

X

Y

Figure 5-4: Demonstration that vector rotations are not

commutative (Roskam, 1979)

X I

U,

/

/

/
/

/

/

/

I

I

I

I

I

I

I

V,

Z_

Figure 5-5: Rotations used to derive rotation

matrix (Roskam, 1979)

The aircraft-motion vector can be expressed relative to the earth frame of reference by

Vac = GSsin Tx e + GScos Tye + wpz,

while the precipitation motion is described by

Vp=u,,x,:+v.y c+(w +vt)z e

where

T

GS

Ua, V a

W a

Wp

V t

aircraft track angle

aircraft ground speed

horizontal winds at observation altitude

air vertical velocity at observation altitude

aircraft vertical velocity

hydrometeor fallspeed at observation altitude

Here, it is assumed that the hydrometeors follow the three-dimensional air motion and fall

at their terminal velocities (vt<0). The radial velocity between the radar and precipitation

is then given by

=

For the case of a nadir-pointing antenna, e T = z a, reducing the Doppler velocity to

v =-w. cosPcosR-GS(sinPcosD+cosPsinRsinD) +

+ wp cos P cos R - v, cos P cos R + (u. sin H + va cos H) sin P + (u. cos H - v sin H) cos P sin R

74

Clearly, these terms result from the various vertical an_l horizontal air and aircraft motions.

The effect of each term on the measured Doppler velocity is best illustrated by labeling

and considering each term separately

Vertical Air Motion:

Horizontal Aircraft Motion:

Vertical Aircraft Motion:

Fallspeed:

Horizontal Air Motion:

- w, cos P cos R

- GS(sin P cos D + cos P sin R sin D)

+ wp cos P cos R

- v, cos P cos R

+ (u a sin H + v, cos H) sin P + (u, cos H - v, sin H) cos P sin R

These variables can be determined both directly and indirectly from the information

provided by the aircraft Inertial Navigation System. Consider first, a case whereby the

antenna is fixed rigidly to the aircraft frame. It is desired to extract w a from the Doppler

velocity. Though the Doppler velocity will be contaminated by terms related to the

horizontal and vertical aircraft motion, these terms can be accounted for using information

from the INS. The hydrometeor fallspeed can additionally be removed by estimating the

faUspeed from an empirical relation of radar reflectivity to fallspeed. However, the motion

of the horizontal winds is unknown for any observed altitude below the aircraft.

Therefore, there is an error in the estimated w a which can be significant for strong

horizontal winds.

If the antenna is instead stabilized at nadir, these errors can be removed. In this case,

and the measured Doppler velocity reduces to

75

v_=--(Wa + v,)+wp

Again, the hydrometeor fallspeed can be removed using an empirical relation. If the

aircraft vertical speed, Wp, can be obtained from the inertial navigation system, the mean

precipitation vertical velocity can be extracted from the measured Doppler velocity.

The inertial navigation system on the U-2 provides angle measurements that are accurate

to within 15 seconds of arc or _A°. Neglecting the uncertainties in the radial velocity

estimate as described in §4.2.3, the uncertain angle measurements affect the measured

Doppler velocity in the following way:

Table 5-1:

Variable

P

Typical Flight Parameters

Typical Value Uncertainty

1 ° 0.06 °

R 1o 0.06 °

H 5 ° 0.1 o

T 10 °

D 5 °

GS 200 °

0 ms _
W n

Ua

W_

0 ms -!

20 ms-

0 ms -I

0.2 °

0.3 °

2.0 ms -I

0.5 ms -t

Table 5-2: Motion Contributions to Doppler Velocit'

Doppler Velocity Term Calculated Contribution

Vertical Air Motion 5.0 ms -I

Horizontal Aircraft Motion 2.28 ms "_ 0.12 ms'_

Vertical Aircraft Motion 0 0.5 ms-_

Fallspeed

Horizontal Air Motion I 0.03 ms _ 0.0 ms t

Horizontal Air Motion 2 0.35 ms -_ 0.0 ms q

Total 7.66 ms -1 0.62 ms -1

Calculated Uncertainty

Oms -1

76

Here,thefallspeedcontributionto Dopplervelocityandits uncertaintyhavebeen

neglected.If theaircraft-motioncontributionsaresubtractedfrom themeasuredDoppler

velocity,theresultingverticalair-motionestimateis 5.38ms-l. It shouldbeevidentthat

thehorizontalair-motiontermis thesignificantcontributorto thisbias. As stated

previously,becausethehorizontalwindsat theobservationaltitudearealmostnever

known,theonly accurateway to removethisbiasis throughstabilizationof thenadir

antenna.

77

References

Atlas, David, J. Eckerman, R. Meneghini, and R. K. Moore, 1982, "The Outlook for

Precipitation Measurements from Space," Canadian Meteorological and

Oceanographic Society, 20:1, 50-61.

Bretherton, Francis P., 1985, "Earth System Science and Remote Sensing," Proceedings

of the IEEE, 73:6, 1118-1127.

Bridges, J. E., and J. R. Feldman, 1966, "A Radar Attenuation-Reflectivity Technique for

the Remote Measurement of Drop-Size Distributions of Rain," Journal of Applied

Meteorology, 5, 349-357.

Doviak, R. J., D. Sirmans, D. Zrnic, and G. B. Walker, 1976, "Resolution of Pulse-

Doppler Radar Range and Velocity Ambiguities in Severe Storms," Preprints, 17th

International Radar Meteorology Conference, American Meteorological Society,

Seattle, WA, 15-22.

Doviak, R. J., D. Sirmans, D. Zmic, and G. B. Walker, 1978, "Considerations for Pulse-

Doppler Radar Observations of Severe Thunderstorms," Journal of Applied

Meteorology, 17:2, 189-205.

Doviak, R. J., and D. S. Zrnic, 1993, "Doppler radar and Weather Observations,"

Academic Press, New York, 562pp.

Heymsfield, Gerry M., 1989, "Accuracy of Vertical Air Motions from Nadir-Viewing

Doppler Airborne Radars," Journal of Atmospheric Sciences, 6:6.

Heymsfield, Gerry M., C. Parsons, L. T. Dod, and L. Miller, 1989, "Planned ER-2

Doppler radar (EDOP) for studying convective storms and mesoscale phenomena,"

Preprints, 24th Conference on Radar Meteorology, Tallahassee, American

Meteorological Society, 581-584.

Heymsfield, Gerry M., W. Boncyk, S. Bidwell, D. Vandemark, S. Ameen, S. Nicholson,

and L. Miller, 1993, "Status of the NASA/EDOP Airborne Radar System," Preprints,

26th International Conference on Radar Meteorology, Norman, American

Meteorological Society, 374-375.

Heymsfield, Gerry M., 1989??, "ER-2 Doppler Radar (EDOP) for Studying Convective

Storms and Mesoscale Phenomena," Proposal submitted to NASA Headquarters,

NASA Goddard Space Flight Center.

78

Hildebrand,PeterH., andJacquesTestud,1992,"ELDORA/ASTRAEA Capabilitiesfor
TOGA COARE," Specialty Meeting on Airborne Radars and Lidars, Toulouse,
France.

Hildebrand, Peter H., and R. K. Moore, 1992, "Meteorological Radar Observations from

Mobile Platforms," pp. 287-314 in Atlas, D. (ed.), Radar in Meteorology, Boston:

American Meteorological Society.

Holton, James, R., 1993, "An Introduction to Dynamic Meteorology," Academic Press,

Chapter 2.

Im, Eastwood, S. Durden, and F. Li, 1992, "NASA/JPL Airborne Rain Mapping Radar

Development Status and 2/92 Rain Observations in Los Angeles," Preprint,

Proceedings of the International Workshop on the Processing and Utilization of the

Rainfall Data Measured in Space, Tokyo, Japan.

Jameson, A. R., and D. B. Johnson, 1990, "Cloud Microphysics and Radar," pp. 323-338

in Atlas, D. (ed.), Radar in Meteorology, Boston: American Meteorological Society.

Jorgensen, David P., and Robert Meneghini, 1990, "Airborne/Spaceborned Radar: Panel

Report," pp. 321-322 in Atlas, D. (ed.), Radar in Meteorology, Boston: American

Meteorological Society.

Lan, Chuan-Tau, and Jan Roskam, 1980, "Airplane Aerodynamics and Performance,"

Roskam Aviation and Engineering Corporation, Chapter 8, Ottawa, KS.

Lease, Steven A., 1990, "Mapping Signal Processing Algorithms to the LMAP Parallel

Processor," Tech Memo, Martin Marietta, Baltimore, MD.

Marshall, J. S., and Walter Hitschfeld, 1953, "Interpretations of the fluctuating echo from

randomly distributed scatterers," Canadian Journal of Physics, 31,962-994.

NASA, 1987, "Laser Atmospheric Wind Sounder (LAWS) Instrument Panel Report,"

Earth Observing System Instrument Panel Report, llg.

NASA, 1990, "The Earth Observing System (EOS): A Mission to Planet Earth," EOS

Program Office, NASA Headquarters, Washington D.C.

NASA, "Tropical Rainfall Measuring Mission (TRMM)," Office for Interdisciplinary Earth

Studies University Corporation for Atmospheric Research, Boulder CO.

Okamoto, K., S. Yoshikado, H. Masuko, T. Ojima, N. Fugono, K. Nakamura, J. awaka,

and H. Inomata, 1982, "Airborne Microwave Rain-scatterometer/radiometer,"

International Journal of Remote Sensing, 3:3, 277-294.

79

Pazmany,A. L., J.Galloway,I. Popstafniga,R. E.McIntosh,R. Kelly, andG. Vali, 1993,
"A ThreeMillimeter AirborneRadarfor High ReselutionPolarimetricCloud
Measurements,"Preprints,26thInternationalConferenceonRadarMeteorology,
Norman,OK, 376-380.

"A ProposedSpaceborneCloudRadarSystem,"1993,preparedundertheauspicesof the
UK GEWEX Forum, A contribution to The World Climate Research Programme's

Global Energy and Water Cycle Experiment (GEWEX).

Pulse Technology, 1989, "Technical Proposal (for the EDOP radar)," Solicitation # RFP5-

27183/204, NASA Goddard Space Flight Center, Greenbelt, MD.

Racette, Paul, G. M. Heymsfield, R. Meneghini, and L. Miller, 1993, "Design of a 94 GHz

Airborne Cloud Radar System," Preprints, 26th International Conference on Radar

Meteorology, Norman, Oklahoma, American Meteorological Society.

Rogers, R. R., 1970, "The Effect of Variable Target Reflectivity on Weather Radar

Measurements," Quarterly Journal of Royal Meteorology, 97, 154-167.

Roskam, Jan, 1979, "Airplane Flight Dynamics and Automatic Flight Controls," Roskam

Aviation and Engineering Corporation, Chapter 2, Ottawa, KS.

Rummier, W. D., 1968, "Introduction of a New Estimator for Velocity Parameters," Tech

Memo, MM-68-4121-5, Bell Telephone Labs, Whippany, NJ.

Sauvegeot,

Schols, J. L., and J. A. Weinman, 1992, "Retrieval of Hydrometeor Distributions over the

Ocean from Airborne Single-frequency Radar and Multi-Frequency Radiometric

Measurements," 11th International Conference on Clouds and Precipitation,

Montreal, Canada.

Simpson, Joanne (ed), 1988, "Report of the Science Steering Group for a Tropical

Rainfall Measuring Mission (TRMM)," Earth Science and Applications Division,

Office of Space Science and Applications, NASA Goddard Space Flight Center,

Greenbelt, MD.

Simpson, J., R. F. Adler, and G. North, 1988, "A Proposed Tropical Rainfall Measuring

Mission (TRMM) satelllite," Bulletin of the American Meteorological Society, 69,
278-295.

Smith, Paul L.0 1985, "Fundamentals of Weather Radar," South Dakota School of Mines

and Technology.

80

Smith,PaulL., 1986,"OntheSensitivityof WeatherRadars,"Journal of Atmospheric

and Oceanic Technology, 3, 704-713.

Srivastava, R. C., A. R. Jameson, and P. H. Hildebrand, 1979, "Time-domain

Computation of Mean and Variance of Doppler Spectra," Journal of Applied

Meteorology, 18, 189-194.

Stimson, George W., 1983, "Introduction to Airborne Radar," Hughes Aircraft

Corporation, Chapter 25, E1 Segundo, CA.

Ulaby, Fawaz T., Richard K. Moore, and Adrian K. Fung, 1981, "Microwave Remote

Sensing - Active and Passive, Volume I," Artech House, Chapter 5.

Ulaby, Fawaz T., Richard K. Moore, and Adrian K. Fung, 1981, "Microwave Remote

Sensing - Active and Passive, Volume II," Artech House, Chapter 7.

Walker, Gene B., P. S. Ray, D. Zrnic, and R. Doviak, 1980, "Time, Angle, and Range

Averaging of Radar Echoes from Distributed Targets," Journal of Applied

Meteorology, 19:3, 315-323.

Zrnic, D. S., 1975, "Moments of estimated input power for finite sample averages of radar

receiverr outputs," IEEE Transactions on Aerospace and Electronic Systems, AES,

11, 109-113.

Zrnic, D. S., 1975, "Signal-to-noise ratio at the output of nonlinear devices," IEEE

Transactions on Information Theory, IT-21, 662-663.

Zrnic, D. S., 1975, "Simulation of Weatherlike Doppler Spectra and Signals," Journal of

Applied Meteorology, 14, 619-620.

81

Appendix A- RIB Code

82

[*

* File • ribcwlox.s

* Purpose • This program acquires temperature information

* Calls •
,

* Author • Shaun R. Nicholson

* Center For Research, Inc.

* University of Kansas

* (913) 864-4835

* Registers: rl :> 0x610000

each pulse and sends it to the VME queues.

After every 1000 pulses, the transmitter is

switched to calibrate mode.

* r2 => 0x630000

* r3 => counter

* r4 => misc

* r5 => Attenuate

* r6 => misc

* r7 =>

* r8 =>

* r9 =>

* rl0 => BCR

* rl I => 0x264000

* r12=> Num Pulses

* r13 => Dwell_cnt

* r 14 => One

* r15 => misc

* r16 => timer

* r17 => timer

* r18 => misc

* r19 => misc

* r20 => misc

* r21 =>

* r22 => Service

* Revision

* History :

* (0.x = Beta)

* Revision: By: Date:

; Board Status

; Radar Status

; calibration counter

; Status register addr's

; Calibration Attenuator table

; Board Control Register

; VME A output queue

; # pulses/dwell - 2

; Current Dwell #

; 1.0

; Pulse #

; for standby status

; for standby status

; Attenuator table offset

; misc status register

; Interrupt Service Routine

Description:

- 83

*!

0.0 S.R.Nicholson 07-28-93 Original.

#include"d:kshaun\dsp32c\binXzone_addr.h"
#include"d:kshaun\dsp32c\binh-ib_addr.h"

.globalmain,Start,Serv_chk,Wait_rad,wait_loop,Wait_int,Service

.globaldone,Dwell cnt,One,temp,Num_Pulses,Cal_flag,Attenuate

.rsect".text"
main:
/*

* (1) Disable Interrupt 1 (Pulse transmitted)

* (2) Disable DMA transfers

* (3) Set external memory partition A to 0 wait states

* (4) Set external memory partition B to 2+ wait states
*/

rl = 0x000d

nop

pcw = rl
Joe = 0x0

r22e = Service

goto Start

hop

/* No interrupts till trigger starts */

/* interrupts and memory wait states */
/* DMA */

/* Interrupt service routine */

.rsect ".R0"

/* Initialize pointers */

Start: rle = BSR

r2e = RSR

r3e = 660001

rlle = 0x264000

rl2e - Num_Pulses

rl 3e = Dwell_cnt

rl4e = One

r15 = *r12

r16 = 32018

r17 = 937

/* Board status register */

/* Radar status register */

/* #pulses + 1 BETWEEN calibrate cycles */

/* VME queue B *!

/* Dwell # */

/* Start at Dwell #1 */

/* # pulses per dwell - 2 */

/* standby status timer */

/* timer */

]*

* Now, wait for the pilot to flip the operation switch from

* STANDBY to RADIATE. While in STANDBY mode, status will be

* recorded approximately once every 30 sec.

84

_t

*/

Wait_rad: r18 = *r2

nop
r18 = *r2

nop
r6 = r18

r6 = r6 & 0x0200

if(ne) pcgoto Begin_trig

nop

/* read RSR */

/* must read twice */

/* check STDBY_RAD bit */

/* bit 1o - standby */

if(rl 6-->=0) pcgoto Wait_rad /* millisecond timer */

nop

if(rl7-->=0) pcgoto Wait_rad /* time for status? */

r 16 = 32018 l* regardless, reload inner timer */

call Status (r8) /* collect status */

nop
r17 = 937 /* reload outer timer */

goto Wait rad

hop

[*

* The pilot has flipped the switch to the RADIATE position.

* The trigger will now be turned on...

*/

Begin_trig:

[*

r 10e = BCR

r6 = 0x00a3

*rl0 = r6

r6 = 0x80a3

*rl0 = r6

r6 = 0x00a3

*rl0 = r6

r18 = 0x800d

pcw = r18

/* Board Control register */

/* the radiate signal */

/* has been captured - */

/* start trigger now */

/* trigger started */

/* Now start interrupts? */

/* interrupts and memory wait states */

* Once the trigger is provided, the A/D's will begin dumping samples

* into their queues. The E-6 will in turn start dumping results

* to the hard drive for storage. At this point, the program simply

* waits for interrupts and checks the fault registers for an
* indication of trouble or transmitter turnoff. An interrupt will

* occur with the transmission of each pulse - at the end of each

* dwell, sensor and status information are sent to the VME queue B

* for storage on physical media.

*/

85

Wait_int: r18= *r2
nop
r18 -- *r2

hop
r6 = r18

r6 = r6 & Ox0200

if(ne) pcgoto Wait int

nop

/* read RSR */-

/* must read twice */

/* check STDBY_RAD bit */

/* still transmitting... */

call Timer (r8)

nop

/* wait a bit */

r18 = 0x000d

pcw = r18

/* stop interrupts */

r18 = *r2

nop
r18 = *r2

hop
r6 = r18

r6 = r6 & 0x0200

/* read RSR */

/* must read twice */

/* check STDBY RAD bit */

if(eq) pcgoto terminate

nop
r18 = Ox8OOd

pcw = r18

/* transmitting */

/* restart interrupts */

goto Wait_int

nop

/* If FAULT2 (hard fault) was asserted, the transmitter has failed during

* both the main start and attempted restart. In this case, (or if

* the transmitter was turned off by the pilot), the GO/STOP bit should

* be set to one thereby indicating that the E-6 should close its
* data files and terminate.

*/

terminate: r18 = 0x4003 /* Signal E-6 to terminate */
*rl0 = r18

NextLife: pcgoto NextLife

nop

/* SUBROUTINE: STATUS

86

* Description:This subroutineisusedto acquirestatusinformation
* (temperatureandpressure)abouttheradartransmitterandreceiver.
* Thesedataarecollectedperiodiclyandsentto theharddrive via
* VME busB.
*/

Status: rl4e = temp
r20 = *rl
nop
*r14 = r20
a0= (*rl l=*r14) + a0

/* Board Status register */

r20 = *r2

hop
r20 = *r2

nop
*r14 = r20

a0 = (*rll=*rl4) + a0

/* Radar Status register */

/* must read twice */

r4e = ADCDAC0

r20 = *r4

nop
r20 = *r4

nop
*rl4 = r20

a0= (*rll=*rl4) + a0

/* temp 1 */

/* must read twice */

r4e = ADCDAC1

r20 = *r4

nop
r20 = *r4

nop
*r14 = r20

a0 = (*rll=*rl4) + a0

/* temp 2 */

/* must read twice */

r4e = ADCDAC2

r20 = *r4

nop
r20 = *r4

nop
*r14 = r20

a0= (*rll=*rl4) + a0

/* temp 3 */

/* must read twice */

r4e = ADCDAC3

r20 = *r4 /* temp 4 */

87

nop
r20= *r4
nop
*r14 = r20
a0= (*rll=*rl4) + a0

/* must read twice _'/

r4e = ADCDAC4

r20 = *r4

nop
r20 = *r4

nop
*r14 = r20

a0= (*rll=*rl4) + a0

/* temp 5 */

/* must read twice */

r4e = ADCDAC5

r20 = *r4

nop
r20 = *r4

nop
*r14 = r20

a0= (*rll=*rl4) + a0

/* temp 6 */

/* must read twice */

r4e = ADCDAC6

r20 = *r4

nop
r20 = *r4

nop
*r14 = r20

a0 = (*rll=*rl4) + a0

/* pressure 1 */

/* must read twice */

r4e = ADCDAC7

r20 = *r4

nop
r20 = *r4

hop
*r14 = r20

a0 = (*rll=*rl4) + a0

/* pressure 2 */

/* must read twice */

r4e = ADCDAC8

r20 = *r4

nop
r20 = *r4

nop

*r14 = r20

a0 = (*rll=*rl4) + a0

/* rib temp */

/* must read twice */

88

r4e= One

aO = (*rl l=*r13) + aO

return (r8)

nop

/* Dwell # */

/* SUBROUTINE: TIMER
,

* Description: This subroutine provides a 10 second time delay.
,

*!

Timer: r6e = 10000000

wait_loop: r6e = r6 - 1

nop

nop

nop

nop

nop

nop

nop

if(ne) pcgoto wait_loop

nop

return (r8)

nop

/* about 10 seconds */

/* (1 microsecond/loop) */

/* tick tock, tick tock... */

/* done? */

* This is the interrupt service routine. When an interrupt occurs,

* the pulse # counter is decremented. Once it goes to zero (ie.

* at the end of each dwell), status information is transferred to

* the VME queue for storage and the counter reset.
*I

Service: r20 = OxOOOd

nop

r4e = Cal_chk

pcw = r20

/* Mask interrupts */

if(r 15-->=0) goto r4

nop

/* no status info this time */

89

/* Found last pulse this dwell - record status information */

Serv_chk: rl4e = temp

r20 = *rl

hop
*r14 = r20

a0= (*rll=*rl4) + a0

/* Board Status register */

r20 = *r2

hop
r20 = *r2

hop
*r14 = r20

a0= (*rll=*rl4) + a0

/* Radar Status register */

/* must read twice */

r4e = ADCDAC0

r20 = *r4

nop
r20 = *r4

nop
*r14 = r20

a0 = (*rl l=*r14) + a0

/* temp 1 */

/* must read twice */

r4e = ADCDAC 1

r20 = *r4

nop
r20 = *r4

hop
*r14 = r20

a0 = (*rl l=*r14) + a0

/* temp 2 */

/* must read twice */

r4e = ADCDAC2

r20 = *r4

hop
r20 = *r4

nop
*r14 = r20

a0 = (*rl l=*r14) + a0

/* temp 3 */

/* must read twice */

r4e = ADCDAC3

r20 = *r4

nop
r20 = *r4

nop
*r14 = r20

a0 = (*rll=*rl4) + a0

/* temp 4 */

/* must read twice */

90

r4e= ADCDAC4

r20 = *r4

hop
r20 = *r4

nop
*r14 = r20

a0 = (*rll=*rl4) + a0

r4e = ADCDAC5

r20 = *r4

nop
r20 = *r4

hop
*r14 = r20

a0= (*rl l=*r14) + a0

r4e = ADCDAC6

r20 -- *r4

nop
r20 = *r4

nop
*r14 = r20

a0= (*rll=*rl4) + a0

r4e = ADCDAC7

r20 = *r4

nop
r20 = *r4

nop
*r14 = r20

a0 = (*rl l=*r14) + a0

r4e = ADCDAC8

r20 = *r4

hop
r20 = *r4

nop
*r14 = r20

a0= (*rll=*rl4) + a0

a0 = (*rl l=*r13) + a0

rl4e = *r13

nop
rl4e = r14 + 1

/* temp 5 */

/* must read twice */

/* temp 6 */

/* must read twice */

/* pressure 1 */

/* must read twice */

/* pressure 2 */

/* must read twice */

/* rib temp */

/* must read twice */

/* Dwell # */

/* Increment Dwell # */

91

*r13 = rl4e
r15= *r12 /* reset pulse counter */

Cal_chk: r4e = Cal_flag

r20 = *r4

nop

if(ne) pcgoto Calibrate

nop

/* are we now calibrating? */

/* yup! */

r3e = r3 - 1

if(ne) pcgoto done

nop

/* time to begin calibration? */

/* not yet! */

Cal_Start: r4e = RCR0
r20 = 0x 16

*r4 = r20

r19=0

r4e -- Cal_flag

*r4 = r20

/* Radar Control reg. */

/* 16=2200 Hz, 12--4400 Hz */

/* turn on calibrate mode */

/* offset into table */

/* set flag */

Calibrate: r5e = Attenuate

r4e = RCR 1

r5e = r5 + r19

r20 = *r5

nop

if(eq) pcgoto nomore

nop
*r4 = r20

r19=r19+2

/* Table base address */

/* Radar Control reg. */

/* add offset */

/* get desired setting */

/* end of table? */

/* nope, set attenuators! */

/* point to next entry */

/* finished with current calibration dwell */

cal_done: goto done

nop

/* finished with all calibration dwells,

nomore: r4e = Cal_flag

*r4 = r20

r4e = RCR0

r20 = 0xle

*r4 = r20

r3e = 660001

return to normal processing */

/* clear calibrate flag */

/* Radar Control reg. */

/* end calibrate mode */

/* le=2200 Hz, 1a--4400 Hz */

/* #pulses + l BETWEEN cal cycles */

done: if(ireq l_lo) pcgoto done /* wait till irq returns */

92

nop
r20 = 0x800d
pcw = r20
rl3e = Dwell cnt
rl4e = One
ireturn
nop

.rsect".text"
.align4
Dwell_cnt:
One:
temp:
Num Pulses:
Cal_flag:
Junk variable:

fltbits 0x0
float 1.0
fltbits 0x0

int 6598

int 0x0

int 0xface

.align 4
Attenuate: 220*int 0x0fc0

220*int 0x0fc 1

220*int 0x0fc2

220*int 0x0fc4

220*int 0x0fc8

220*int 0x0fd0

220*int 0x0fe0

220*int 0x0fc0

int 0x0000

/* high before exiting */

/* restore interrupts */

/* restore pointer */

/* restore pointer */

/* current Dwell # */

/* # xmit pulses/status - 2 */

/* Calibration dwell flag */

/* end of table */

93

Appendix B - ACQ Code

94

* File •

* Purpose"

* Author"

* Date •

*!

acqreal.s

This is the data scattering program to be flown

during the Wallops Island experiments during

September 1993. For each transmitted pulse,

436 tags are supplied to route the raw data to

LUA Board I for reflectivity processing. It

is intended that the system operate at a PRF of

2200 Hz, 0.25 usec pulse width, and I MHz sampling.

S.R. Nicholson

8/10/93

#include "d:kshaun\dsp32c\binkacq_addr.h"

.rsect ".text"

.align 4

main:

/*

* (1) Enable interrupt one from dataqaffn

* (2) Disable DMA transfers

* (2) Set external memory partition A to 0 wait states

* (3) Set external memory partition B to 2+ wait states
*/

ioc = 0x0

goto Start

nop

/* DMA */

.rsect ".R0"

.align 4
Start: r le = ADDQAB

r3e = Range_Gates
r5e = ADCTL0

r6 = 0x000d

r7 = 0x800d

rlle = Int_flag

r13=0

r14 = 0x0

r16 = 998

r21 = 1

r22e = Intsvc

pcw - r7

/* VME output queue's */

/* # range_gates */
/* to control A/D's */

/* mask Int 1 */

/* enable Int_l */

/* A/D control bit */

/* 0 -- ARM, 1 = Stop */

/* Always! */

/* #good - 2 before token pass */

/* Always! */

/* load address of qempty svc routine */

95

SendGood: call Write_Tags(r8)
nop

Monitor: r20= *rl 1
nop
if(eq) pcgotoMonitor
nop
*rl 1= r14

/* wait for interrupt */

/* clear interrupt flag */

if(rl6-->=0) pcgoto Send_Good/* time to pass token? */

nop

r16 = 998

r8e = First_Time

r20 = *r8

nop

if(eq) pcgoto SendGood
*r8 = r21

/* reload pulse counter */

/* don't pass the first time */

/* set flag regardless */

Pass_Token: r2e = Pass_Cmd

a0 = (*rl=*r2) + a0 /* pass token to LUA */

goto Send_Good

nop

/* subroutine -

Write_Tags:

Write_loop:

write valid tags for 1 pulse */

r18 = *r3

r2e = KeepTag

do 0,r18

a0 = (*rl=*r2++) + a0

nop
*rl 1 = r14

return (r8)

nop

/* #ranges */

/* Tag 1 */

/* clear Int_flag */

/* Service routine for external interrupt one: this interrupt is

* generated each time the pre-trig goes low. During the interrupt,

* the Trigger Source bit in ADCTL0 is pulled low, thereby arming

* the A/D's to begin conversions once the pre-trig returns high.

* The DSP then burst writes destination tags for each range gate

* to be acquired, increments a dwell counter, and reloads a

* range-gate count down counter that is used in interrupt 6.

96

*/
Intsvc:

Exit_1:

pcw= r6
*r5 = r13
*rl 1= r21
if(ireq1_1o)pcgotoExit l
nop
pcw = r7
ireturn

/* mask Interrupt 1 */
/* reload A/D control bit */

/* Set Int flag */

/* re-enable interrupt 1 */

.rsect ".text"

.align 4

Range_Gates:

Int flag:

First_Time:

.rsect ".R 1"

/* Format

.align 4

Pass_Cmd:

Keep_Tag:

int 217

int 0x0

int 0x0

/* # ranges- 1 */

/* set high in Int. 1 */

/* first dwell flag */

: Data_B : Data_A : Dest_B : Dest_A: */

fltbits 0x00001 fl f

10*fltbits 0x00(X)_10

10*fltbits 0x00000011

10*fltbits 0x00000012

10*fltbits 0xO0000013

200*fltbits 0x00000000

97

w

Appendix C - Reflectivity Code

98

w

/*

File '

Purpose •

Calls •

Author '

Registers:

refzone0.s

This program is used for speed testing of the

reflectivity algorithm. It is nearly identical
to reflect.s.

Shaun R. Nicholson

Center For Research, Inc.

University of Kansas

(913) 864-4835

rl =>

r2 =>

r3 =>

r4 =>

r5 =>

r6 =>

r7 =>

r8 =>

r9 =>

rl0

rll

r12

r13

r14

r15

r16

r17

r18

r19

r20

r21

r22

QDATA

QDATB

DESTA

DESTB

NadirXMean

NadirCoMean

FwdCoMean

Range_Gates

=> Nadir_Hold

=> Fwd_Hold

=> mlsc

=> HIlSC

=> IIIlSC

=> mlsc

=> mlsc

=> mlSC

=> Range count

=>

=> Pulse count

-->

; DSP Queue A

; DSP Queue B

; Bus A Destination Register

; Bus B Destination Register

; Nadir X-Pol Echo Power Means

; Nadir Co-Pol Echo Power Means

; Forward Co-Pol Echo Power Means

; Addr containing # range gates

; Input Buffer for Nadir Channel

; Input Buffer for Forward Channel

; Used to output results

; Used for results dest. tags

; # range gates

; # pulses/dwell

Revision

History •

(0.x = Beta)

Revision:

0.0

By:
S.R. Nicholson

Date:

07-24-92

Description:

Original.

_ 99

*/

/* #include "d:kshaun\dsp32c\binLzone_addr.h" */

.global main,Start,Next_Dwell,Next_Block,Next Pulse,Compress,Output

.global NadirXMean,NadirCoMean,FwdCoMean

.global Count2,Num_Block,Num_Pulses,Range_Gates,Comp_Factor

.global Nadir_Hold,Fwd Hold,PassToken

.global QDATA,QDATB,DESTA,DESTB

.rsect ".text"

main:

/*

* (1) Disable interrupts

* (2) Disable DMA transfers

* (2) Set external memory partition A to 0 wait states

* (3) Set external memory partition B to 2+ wait states
*/

rl = 0x000d

pcw = rl /* interrupts and memory wait states */
ioc = 0x0 /* DMA */

goto Start

nop

.rsect ",R0"

/* Initialize pointers */

Start: rle = QDATA

Next_Dwell:

[*

* Clear arrays

r2e = QDATB

r3e = DESTA

r4e = DESTB

r8e = RangeGates

rl4e = Dwell_cnt

r15 = *r14

nop
r15 = r15 + 1

*r14 = r15

rl4e = Range_cnt
r15 = 0

*r14 = r15

r5e = NadirXMean

r6e = NadirCoMean

r7e -- FwdCoMean

/* Bus A DSP Queue */

/* Bus B DSP Queue */

/* Bus A Destination Register */

/* Bus B Destination Register */

/* Addr containing # range gates */

/* Update Dwell count */

/* increment count */

/* and save... */

/* next, zero out */

/* the range count */

used for holding partial sums and resultant means

100

* for eachrangegate.
*/

r13e= Zero
r18= *r8
nop
do2,r18

a0= (*r5++=*r13) + a0
a0= (*r6++=*r13) + a0
a0= (*r7++=*r13) + a0

/* N range gates */

/* Clear NadirXMean array */

/* Clear NadirCoMean array */

/* Clear FwdCoMean array */

:g

:#

* Now, read a pulse of reflectivity data from the input FIFOs and

* store in separate buffers. The data for an entire dwell will be

* read pulse by pulse.

This program expects that each word read from FIFO A contains

a single range gate from the Nadir Cross-polarization receiver

in the upper 16 bits, and a single gate from the Nadir Co-polarization

receiver in the lower 16 bits. Each word read from FIFO B is

expected to contain a gate from the Forward Co-polarization
receiver in the lower 16 bits.

For each range gate, the pulses in a given dwell are summed

and multiplied by a scaling factor (Comp_Factor). They are then

stored in the mean-reflectivity table. Data for

a dwell are simultaneously summed and scaled, taking full

* advantage of the DSP32Cs multiply-accumulate architecture.

*/

rl2e = Num_Pulses

r20 = *r12

r5e = NadirXMean

r6e = NadirCoMean

r7e = FwdCoMean

r15 = 4

/* # pulses/dwell */

/* offset */

Next_Pulse: r18 = *r8

rl0e = Nadir_Hold

rlle = Fwd_Hold

do 1,r18

a0 = (*rl0++=*rl) + a0

a0 = (*rl l++=*r2) + a0

/* get # range gates */

/* read pulse from input FIFOs */

/* Read one range from Nadir */

/* and one from Forward ant. */

r18 = *r8

rl0e = Nadir_Hold

/* get # range gates */

101

Compress:

r 11 e = Fwd_Hold

do 5,r18

al = float(*rl0++)

a0 = float(*rl0++)

a2 = float(*rl l++r15)

*r6++ = a3 = *r6 + al

*r5++ = a3 = *r5 + a0

*r7++ = a3 = *r7 + a2

r5e = NadirXMean

r6e = NadirCoMean

/* Nadir Co */

/* Nadir X */

/* Forward Co */

/* measurements for all */

/* accumulate echo power */

/* three channels */

/* reset pointers */

/* for next pulse */

if(r20-->=O) pcgoto Next_Pulse
r7e = FwdCoMean

r18 = *r8

r 12e = Comp Factor

do 2,r18

*r5++ = aO = *r5 * *r12

*r6++ = a0 = *r6 * *r12

*r7++ = aO = *r7 * *r12

/* more pulses this dwell? */

/* (this one is executed too!) */

/* get # range gates */

/* Scaling factor */

* Output results:

* Results are output as follows: Nadir polarisations are output

* via Bus A with the cross-polarisation in the upper 16 bits and

* the co-polarisation in the lower 16 bits. Forward Co-polarisation

* is sent in the lower 16 bits of Bus B. Bits 16-25 (Bus B) contain

* range gate # while bits 26-31 contain the Dwell # (modulo 64)
*/

Output: r5e = NadirXMean

r6e = NadirCoMean

r7e = FwdCoMean

rl8 = *r8

rl2e = pack

rl3e = Range_cnt
r 16 = 0x44

*r3 = r16

*r4 = r16

do 26,r 18

*r12++ = a0 = int(*r6++)

*r12-- = aO = int(*r5++)

rl4e = Dwell_cnt

/* get # range gates */

/* pack X & Co polarisations */

/* tag current range */

/* send results to Board 4, zone 4 */

/* Bus A destination */

/* Bus B destination */

/* get Nadir Co */

/* get Nadir X */

102

]*

* Pass the token

*/

PassToken:

r15 = *r14

nop

a0 = (*rl-*rl2) + a0

r15 = r15 & 0x3f

r15 = r15>>>l

r15 = r15>>>l

r15 = r15>>>l

r15 = r15>>>l

r15 = r15>>>l

r15 = r15>>>l

r15 = r15>>>l

r14 = *r13

nop
r14 = r14 + 1

*r13 = r14

r14 = r14 & 0x3ff

r15 = r15 I r14

*r12++ = a0 = int(*r7++)

nop
*r12-- = r15

nop

nop

nop

a0 = (*r2=*r12) + a0

nop

r13 = 0xlf

*r3 = r13

*r4=r13

r13 = 0xl 1

*rl = r13

*r2 = r13

goto Next_Dwell

nop

/* Get current dwell # */

/* send Nadir polarisations */

/*truncate to 6 bits */

/* shift fight 1 bit */

/* shift fight 2 bits */

/* shift fight 3 bits */

/* shift right 4 bits */

/* shift fight 5 bits */

/* shift fight 6 bits */

/* shift fight 7 bits */

/* get previous range # */

/* update it */

/* and save it */

/* truncate to 10 bits */

/* and pack it in place */

/* Forward Co in lower 16 */

/* store in upper 16 bits */

/* latency... */

/* latency... */

/* latency... */

/* ship it! */

/* latency */

/* Pass token cmd */

/* Bus A */

/* Bus B */

/* pass to node 1, zone 1 */

.rsect ".text"

.align 4
NadirXMean:

NadirCoMean:

FwdCoMean:

436*float 0.0

436*float 0.0

436*float 0.0

/* Mean Reflectivity table */

/* # range gates */

Nadir__Hold: 436*fltbits 0x0 /* Holding area for packed reflectivity */

103

Fwd_Hold:

.rsect".RI"

.align4
Zero:
Num_Pulses:
Range_Gates:

.align4
pack:
holdpack:
PackFlag:

Fubar:
stopflag:
.align4
addrflag:

Comp_Factor:
.align4
Range_cnt:
Dwell_cnt:
QDATA:
QDATB:
DESTA:
DESTB:

436*fltbits OxO

float 0.0
int 1998
int 108

float 0.0
int 0
int 0

int Oxface
int Oxface

float0.0

float 0.0005

int 0

int 0

float 0.0

float 0.0

float 0.0

float 0.0

/* measurements from nadir antenna */

/* # range gates */

/* Holding area for packed reflectivity */
/* measurements from forward antenna */

/* # range gates */

/* # pulses/dwell - 2 */

/* Number of range gates - 1 */

/* holding spot for result packing */

/* holds extra result between range packing */

/* >0 => SNR from last range waiting to be

* packed. It is sitting in holdpack.

* --0 => previous range completely packed */

/* For test purposes only */

/* For test purposes only */

/* for test purposes only */

/* 1/(# pulses/dwell) */

/* for test purposes */

/* for test purposes */

104

Appendix D - Autocovariance Code

105

p

* File •

* Purpose"

* Calls •
,

* Author"

* Revision

* History :

* (0.x = Beta)

* Revision:

* 0.0

* 0.I
,

* 0.2

* 0.3

* 0.4

* 0.5
,

* 0.6
,

* 0.7
,

* 0.8

*/

ppzone0.s

This program implements the pulse-pair algorithm.
It is intended to be run as zone 1 on an LUA200

designated as Board ID = 1. Results are packed.

Shaun R. Nicholson

Center For Research, Inc.

University of Kansas

(913) 864-4835

By: Date:
S.R. Nicholson 11-15-91

S.R. Nicholson 01-09-92

S.R. Nicholson

S.R. Nicholson

S.R. Nicholson

S.R. Nicholson

S.R. Nicholson

S.R. Nicholson

S.R. Nicholson

03-10-92

03-31-92

04-07-92

06-22-92

07-01-92

07-02-92

07-12-92

Description:

Original.

Vp calculations were

not done correctly.

Token passing was not

done correctly.

Removed FIFO allocation.

Replace if() goto <addr>

with if() goto rxx for

24-bit addressing.

ver. 0.3 was corrupt

Replace if() goto rxx

with if() pcgoto <addr>

to use offset addressing.

Reduce #pulses/range gates

for token pass debugging.

Stop after one dwell

Countl defined wrong.

Remove code to save

current DSP output

queue. This was used

only for simulation.

106

o

.global main,Dwell,Block,Range,IQstart,RStart,Vpstart,Out

•global _atan,_div ,_loge,_xtoy

.global QDATA,Rout,DESTA,IpPrev,Ip,QpPrev,Qp,NumPulse,RangeGates,Vpcoeff

.global VarCoeff, OneThird,FourThirds,Zero,temp 1,temp2,temp3,temp4,Count 1

.global Count2,Count3,Count4,Block,IQPack,I0,I 1,I2,Q 1,Q2,R0,R 1,R2,Vp,Var,SNR

.global Routaddr,PartSum,theta,pack,holdpack,PackFlag,xtra,noxtra

.global Fubar

#include "c:\dosapps\dsp32c\bin_zone_addr.h"

.rsect ".text"

main:

/*

* (1) Disable interrupts

* (2) Disable DMA transfers

* (2) Set external memory partition A to 0 wait states

* (3) Set external memory partition B to 2+ wait states
*/

rl = 0x000d

pcw=rl
ioc = 0x0

goto Dwell

nop
/*

/* interrupts and memory wait states */
/* DMA */

* At the beginning of each dwell, memory registers used to accumulate

/* Update dwell count */

/* increment count */

/* and save... */

/* next, zero out */

/* the range count */

* results need to be cleared...

*/

.rsect ".R2"

Dwell: r2e = Dwell_cnt

r14 - *r2

nop
r14 = r14 + 1

*r2 = r14

r2e = Range_cnt
r14=0

*r2 = r14

r2e -- PartSum

rl4e = Count4

rl = *r14

r3e = Zero

do 0,rl

107

a0= (*r2++=*r3) + a0
rl4e = NumBlock /* # blocks per dwe|l - 2 */
r18 = *r14

* Read 32 bit data from the input FIFO and store in external memory. The

* data are packed I and Q (12 bits each sign extended to 16 bits) with I

* in the most significant 16 bits. These data will be transferred directly

* to memory and unpacked later. This algorithm will process a variable

* number of range gates. To allow this, the SBC must load the required number

* of iterations to be done into the 16 bit Zone memory variable Count 1.

* Count 1 = #range gates * #pulses each range - 2

*/

Block: rle = QDATA

r2e = IQPack

rl4e = Countl

r3 -- *r14 /* read data from input FIFO */

loop: a0 = (*r2++=*rl) + a0

if(r3-->=0) pcgoto loop

hop

rle -- RangeGates /* #range gates to process */
r17 = *rl

rle = Routaddr

r2e = QDATA

rl = r2e / Save address of Output FIFO *!

rl3e = IQPack /* Base address for packed I & Q */

rl2e = PartSum /* Partial results of complex math */

/*

* At this point, a block of packed I & Q data has been read from the input

* FIFO and stored in external RAM. Next, they will be separated into

* I and Q components, converted to the special DSP32C floating point format,

* and stored in on-chip RAM. In-phase data will be stored in internal RAM

* bank 0 while Quadrature data will be stored in internal RAM bank 1. Note

* that only sufficient data for one range gate is expanded at a time. These

* are then processed and intermediate results stored. They cycle repeats for

* the next range gate. This is due to memory limitations.
*/

* Separate I and Q data, and convert to float...
*/

Range: rle = Ip

r2e = Qp
r3e = r13

rl3e = r13 + 4

/* Get base addr of data for range X */

/* Point to base for next range */

108

/* get pulse-to-pulse distance */

/* # pulses each (partial) range */

rl4e = Count3

r15 = *r14

r 14e = Count2

r5 --- *r14

nop
do 1,r5 /* enough data for 1 partial range */

*rl++ = a0 = float(*r3++)

*r2++ = a0 = float(*r3++rl5)

* Define Pointers...

*/

rle=rl2

r6e = IpPrev

r7e = IpPrev+4

r8e = IpPrev+8

r9e -- QpPrev

rl0e = QpPrev+4

/* Points to IpPrev stored in PartSum

* for the current range */

r 11 e = QpPrev+8

a0 = (*r6=*rl++) + a0 /* Restore IpPrev */

a0 - (*r7=*rl++) + a0 /* Restore IpPrev+l */

a0 = (*r9=*rl++) + a0 /* Restore QpPrev */

a0 = (*rl0=*rl++) + a0 /* Restore QpPrev+l */

/* Now, r 1 points to Previous I0 */

r2e = r12+20 /* Previous I1 */

r3e = r12+24 /* Previous 12 */

r4e = r12+28 /* Previous Q1 */

r5e = r12+32 /* Previous Q2 */

* Accumulate pulse pairs...

* I0 += Ip^2 + Qp^2

* I I += Iplp+ 1 + QpQp+ 1

* Q 1 += -IpQp+ 1 + Qplp+ 1

* 12 += Iplp+2 + QpQp+2

* Q2 += -IpQp+2 + Qplp+2

IQstart: rl4e = Count2 /* How many pulses? */

r16 = *r14

nop
do 12,r16

a0 = *r6++ /* IpPrev */

al = *r9++ /* QpPrev */

109

nop
a2= *rl + aO * aO

• rl = a2= a2+ al * al

a2 = *r2 + aO * *r7

• r2 = a2 = a2 + al * *rlO

a2 = *r4 - aO * *riO++

• r4 = a2 = a2 + al * *r7++

a2 = *r3 + aO * *r8

• r3 = a2 = a2 + al * *rl 1

a2 = *r5 - aO * *rl 1++

• r5 = a2 = a2 + al * *r8++

/* latency... */

/* a2 = I0 + Ip^2 */

/* I0 = Ip^2 + Qp^2 */

/* a2 = I 1 + Iplp+ 1 */

/* I1 = a2 + QpQp+l */

/* a2 = Q1 - IpQp+l */

/* Q 1 = a2 + Qplp+ 1 */

/* a2 = I2 + Iplp+2 */

/* I2 = a2 + QpQp+2 */

/* a2 = Q2 - IpQp+2 */

/* Q2 = a2 + Qplp+2 */

* Save last two I & Q pulses - they will be needed for

* the next

*/

a0 =

a0 =

a0 =

a0 =

nop
rl2e

data block!

(*r12++=*r6) + a0

(*r12++=*r7) + a0

(*r12++=*r9) + a0

(*rl2++=*rl0) + a0

= r12 + 20

/*

* More range gates to process this Block ?
*/

if(r 17-->=0) pcgoto Range

hop
rl2e = PartSum

/* First, Ip */

/* then Ip+ 1 */

/* Qp */

/* and Qp+l */

/* skip past copies of I0-Q2

* stored in PartSum */

/* Yup! */

/* Nope, reset partial sum */

/* pointer for the next block */

* Is there another block of data to process this Dwell ?
*/

if(rl8-->=0) pcgoto Block /* Yup! */

hop
/*

* If not, then the complex summation is finished and it is

* time to compute the various parameters of interest.
*/

rl4e = RangeGates

r17 = *r14

RStart: rle = I0

rl2e = r12 + 16

do 0,4

/* point to I0 for current range */

/* copy I & Q sums to named memory

* variables for further

110

* processing */

a0 = (*rl++=*rl2++) + a0

/* R(0) = IO/N */

chk2: nop

nop

nop
rle--I0

r2e=R0

a0=(*r2=*rl) + a0

.align 4

.align 4

int24 temp3

int24 temp I,R 1

/* IR(2)I = sqrt(12^2 + Q2^2)/N */

rle = I2

r2e = Q2

r3e = temp 1
a0 -- *rl * *rl

• r3 = a0 = a0 + *r2 * *r2

call _sqr (r14)

nop

.align 4

.align 4

int24 temp3

int24 templ,R2

III

Vpstart:

.align 4

rle--I1

r2e=temp I
aO=-*rl

*r2++=aO=ifalt(*r 1)

rle=Ql
aO=-*rl

*r2=aO=ifalt(*rl)

call _div (r14)

nop

int24 temp2,templ,temp3

call _atan (r14)

nop

int24 tempi

int24 temp3,theta

/* temp I=abs(I 1) */

/* temp2=abs(Q 1) */

/* temp3=Q/I */

.align 4

/* find arg(Z) where Z=II+jQI */
rle=I1

aO=*r I

r2e=Q1

al=*r2

r3e=theta

r4e=pi

if(alt) pcgoto lefthalf

nop

if(age) pcgoto quaddone

nop

quad4: *r3=aO=-*r3

goto quaddone

nop

lefthalf: if(age) pcgoto quad2

nop

quad3: *r3=aO=*r3-*r4

goto quaddone

nop
quad2: *r3=aO=*r4-*r3

nop

nop

quaddone: rle = VpCoeff

r2e = Vp

*r2 = aO = *r3 * *rl

/* find principal angle */

/* set flag if I 1 is negative */

/* set flag if Q 1 is positive */

/* I 1 was negative ! */

/* Q 1 positive - quadrant I */

/* negate theta */

/* Q 1 positive - quadrant II */

/* arg = theta - 180 */

/* arg = 180 - theta */

/* Vp = VpCoeff * theta */

112

.align 4

.align 4

nop

int24 R 1,R2,temp 1

call _loge (r 14)

nop

int24 temp3

int24 temp 1,temp2

rle = VarCoeff

r2e = Var

*r2 = a0 = a0 * *rl

/* SNR = [IRl1^(4/3)] / [R0 * IR21^(1/3) - IRl1^(4/3)] */

call _xtoy (r14) /* R2^(1/3) */

nop

int24 temp3

int24 R2,OneThird,temp I

.align 4

.align 4

r8e = R0

r9e = temp 1

rl0e = temp2

*r9 = a0 = *r8 * a0

call _xtoy (r14)

nop

int24 temp3

int24

/* *r9 = R2^(1/3) */

/* *rl0 = R1^(4/3) */

/* *r9 = R0 * R2^(1/3) */

R 1,FourThirds,temp2

.align 4

/*

* Dump

*/

*r9 = a0 = *r9 - a0

call _div (r14)

nop

int24 temp2,temp I,SNR

goto Out

nop

results to the output FIFO...

.rsect ".R 1"

Out: rle = DESTA

r2e = QDATA

r5 = 0x44

*rl = r5

r5e = Vp

/* R0 * R2^(1/3) - R1^(4/3) */

/* send results to board 4, zone 4 */

/* mean doppler velocity */

113

- r7e= pack /* pack Vp and variance */

*r7++ = a0 = int(*r5++)

*r7-- = a0 = int(*r5++)

r8e = Dwell_cnt

r6 -- *r8

nop

a0 -- (*r2=*r7) + a0

r6 -- r6 & 0x3f

r6 = r6>>> 1

r6 = r6>>> 1

r6 = r6>>>l

r6 = r6>>>l

r6 = r6>>> 1

r6 = r6>>> 1

r6 = r6>>> 1

r8e = Range_cnt

rl = *r8

nop
rl = rl + 1

*r8 = rl

rl = rl & 0x3ff

r6 = r6 1r 1

*r7++ = a0 = int(*r5)

nop
*r7-- -- r6

nop

hop

hop

a0 = (*r2=*r7) + a0

nop

hop

nop
rle = RStart

if(rl7-->=0) goto rl

nop

goto PassToken

nop

/*

* Pass the token A back to zone 0

*/

PassToken: rle = DESTA

r2e -- QDATA

r3 = 0xlf

/* pack Vp *!
/* with variance...*/

/* Get current dwell # */

/*

/*

/*

/* shift right 2 bits */

/* shift right 3 bits */

/* shift right 4 bits */

/* shift right 5 bits */

/* shift right 6 bits */

/* shift right 7 bits */

send packed result on Bus A */
truncate to 6 bits */

shift right 1 bit */

/* get previous range # */

/* update it */
/* and save it */

/* truncate to 10 bits */

/* and pack it into place */

/* pack SNR */

/* with marker */

/* send SNR and marker on Bus A */

/* next range */

/* pass token to next process... */

/* pass token... */

114

*rl = r3
r3 = 0x11
*r2 = r3
gotoDwell
nop

.rsect".R2"

/* Routine source file: atan.asm */

/* DSP32/DSP32C Application Software Library. Version 2.0 */

**

/* ...brd 1, zone-t */

/* and prepare for next dwell */

/*

_atan(A,B,C)

float *A,*B,*C;

scratch register short r4,r5 (for DSP32 only);

scratch pointer register short rl,r2,r3,rl4;

scratch register float a0,a 1,a2,a3;
*/

#include <dspregs.h> /* Translates DSP32C keywords to DSP32 *

• keywords. See Section 2.3.1 */

atan: r 1e=*r 14++

r2e=*rl4++

r3e=_atanB

*rl++=a3=*r2 + *r3

#if DSP32C

a2 = seed(a3)

*rl=a0=*r2 - *r3++

r2e = *r14

a0=*r3++-a3 * a2

al=*r3++ * a2

a2=*r3++-a3 * a2

#else

*rl--=a0=*r2 - *r3++

r2e = *r14

nop
r4=* r 1++

r5=*rl++

r4--r4,_Oxffff

r5=r5'_0x7fff

*r2++=r4

*r2---r5

/* pointer to local variable */

/* pointer to x */

/* x+l */

/* x-1 */

/* pointer to out */

/* a0= 1.4074-x*y */
/* al=.81*x */

/* a2=2.27424-x*y */

/* x-I */

/* pointer to out */

/* load x+l=y into cau */

/* invert all bits except sign bit */

/* 1st estimate of I/y,

or x, written to memory */

a0=*r3++ -a3 * *r2 /* a0=l.4074-x*y */

115

al=*r3++ * *r2

a2=*r3++-a3 * *r2

#endif

a0=*r3++ +a0 * a0

al=a0*al

a2=a2*al

nop
a0=a2+a0*al

nop

hop
al=*r3 + a3*a0

a0= a0 * *rl

nop

nop
• r2 = a2 = a0-al*a0

nop

nop
a0=-a2*a2

rle= atanC

hop
a0=a0**r2

/* al=.81*x */

/* a2=2.27424-x*y */

/* a0= 1.71742-2.8148*x*y+x^2*y^2 */

/* al=l.14*x-.81*xA2*y */

/* a2=l.842*x-.81*xA2*y */

[* a0=3.8x-5.41 x^2*y+3.42x^3 * ...

y^2-. 81 x^4* ya3 */

/* al=-I + y* x(new) */

/* scale by "(x-l)" */

/* third iteration */

/* a2=(x-1)/(x+l) */

/* y**2 */

/* y**3 */

al =*rl++ + a0* *rl++

a2 =*rl+++ a0* *rl++

a0 = a0 * *r2

al = al * a0

a2 = *r I++ + a2 * a0

/* c7 + c9"(y^2) */

/* c3 + c5*(ya2) */

/* y^4 */

/* c7"(y^3) + c9"(y^5) */

/* pi/4 + c3"(y^3) + c5"(y^5) */

a2 = a2 +*rl++* *r2

*r2=a0=a2+al*a0

nop

goto r 14+4

hop

/* pi/4+c I *y+ ...

c3*(yA3)+c5*(y^5) */

/* pi/4+c I *y+c3*(y^3)+c5*(y^5)

... +c7*(y^7)+c9*(ya9) */

_atanB: float 1.0

float 1.4074074347, 0.81, 2.27424702, -.263374728, - 1.0

atanC: float .0208351, -.085133 /* c9, c7 */

float. 180141, -.3302995 /* c5, c3 */

float .785398163, .999866 /* pi/4, cl */

/* */

/* _div(A,B,C) */

116

1" */

/* float *A,*B,*C; */

/* scratch register short r5,r6 (DSP32 only); */

/* scratch pointer register short rl,r2,r3,r4,rl4, */

/* scratch register float a0,al,a2,a3; */
/* */

_div: r4e = *r14++

rle = *r14++

r2e = *r14

a3=*rl

/* numerator pointer */

/* denominator pointer */

/* point to inverse location */
/* load number to be inverted into a3 */

#if DSP32C

al = seed(*rl)

r3e=_divA

nop
a0 = *r3++ + a3 * al

al = al * *r3++

#else

r3e=_divA

r6=*rl++

r5=*rl--

r6=r6^0xffff

r5=r5_x7fff

*r2++=r6

*r2--=r5

a0 = *r3++ + a3 * *r2

al =*r2 * *r3++

#endif

nop
a0 = *r3++ + a0 * a0

a2 = a l * a3

nop
a0 = a0 * a I

al =*r3 + a0 * a2

nop
a0 = a0 * *r4

nop

nop
• r2 = a0 = a0- al * a0

/* a0=--1.6014-x*y */
/* al=.8237*x */

/* load number into cau */

/* invert all bits except sign bit */

/* 1st estimate written to memory */

/* a0=-1.6014-x*y */
/* al=.8237*x */

/*

/*

/*

a0=3.4166-3.2023*x*

y+x^2*y^2 */

a2=.8237*x*y */

a0=-2.814-2.638x^2 *

y+.8237x^3*y^2 */

al=l.814*x*y-2.638*x^2 *

y^2+.8237*x^3*y^3 */

/* scale by numerator */

/* last iteration

written to memory */

117

nop
got, r14 + 4
nop

_divA: float - 1.60138661,0.82371354,0.85221935,-1.0
.align4
/*******_**_******_*****************_********_***_*_******[

/* Routine source file: loge.asm */

/* DSP32/DSP32C Application Software Library. Version 2.0 */

/******_************************_*.0.**********_***_*****/

/*

_loge(A,B,C)

float *A, *B, *C;

scratch register short r5,r6;

scratch pointer register short rl,r2,r3,r4,rl4;

scratch register float a0,al,a2,a3;
*/

#include <dspregs.h> /* Translates DSP32C keywords to DSP32 *

• keywords. See Section 2.3.1 */

_loge: r2e=*rl4++
rle=*rl4++

r4e=_logeC+36

*r2=a0=*rl

nop
r3e-r2 + 4

/* pointer to a copy of x */

/* pointer to operand, x */

/* pointer to c8 */

/* load x into copy */

/* pointer to scratch pad for exponent */

/* extract mantissa, M, and divide by 2 */

r5=-I + 128 /* -1 plus bias */

r2=r51 / replace exponent of operand with "-1" */
a3=*r2 /* move M/2 into a3 */

/*

r61=*rl

rle=*rl4

r6=r6+ 1-128

*r3=r6

*r3=a0=-float(*r3)

store exponent, E, as a floating point number */

/* get exponent (byte) */

/* pointer to output */
/* remove bias and add 1 */

/* store as an integer, i.e., (E+ 1) */

/* convert to float and store */

/* compute log(M/2) in base 2 */

a0 = a3 * a3 /* (M/2)^2 */

al = *r4-- + a3 * *r4-- /* c7 + c8"M/2 */

a2 = *r4-- + a3 * *r4-- /* c4 + c5"M/2 */

a0 = a0 * a3 /* (M/2)^3 */

118

al =*r4-- + al *a3

a3 = *r4-- + a3 * *r4--

a2 = *r4-- + a2 * *r2

al = al * a0

a3 = *r4-- + a3 * *r2

a0 = *r3 * *r4

a2 = a3 + a2 * a0

al = a2+al * a0

/* c6+c7*(M/2)+c8*((M/2)^2) */
/* c 1 + c2"M/2 */

/* c3+(M/2)*(c4+c5*(M/2)) */

/* c6*((M/2)^3)+:..+c8*((M/2)^5) */

/* cO + cl*(M/2) + c2"((M/2)^2) */

/* c9 * (E+I) */

/* c0+c 1*(M/2)+...+c5*((M/2)^5) */

/* c0+c I*(M/2)+...+c8*((M/2)^8) */

/* add c9*(E +1) and store */

*rl = a0 = al + a0

nop

goto r 14+4

nop

_logeC: float 0.6931471806 /* c9 */

float -3.067466148 /* cO */

float 51.49518505 /* c3 */

float 11.30516183 /* cl */

float -27.7466647 /* c2 */

float -33.20167437 /* c6 */

float -66.69583126 /* c4 */

float 58.53503341 /* c5 */

float 10.98927014 /* c7 */

float -1.613006222 /* c8 */

.align 4

/* */

/* _sqr(A,B,C) */

/* ,/

/* float *A,*B,*C; */

/* scratch register short r4,r5; */

/* scratch pointer register short rl,r2,r3,rl4; */

/* scratch register float a0,al,a2; */

/* ,/

#include <dspregs.h> /* Translates DSP32C keywords to DSP32 *

• keywords. See Section 2.3.1 */

_sqr:
r2e = *r14++

rle = _sqrC
*r2++ = a0 = *rl++

*r2-- = a0 = *rl

/* address of local variables */

/* stores exponent adjustment */

/* stores exponent adjustment */

119

rle = *r14++

r3e = _sqrB
r41 = *rl

nop
r5 = -r4

*r2 = r51

a2 = *rl * *r2

r4 = r4 >> 1

if (cc) pcgoto _sqrA
a I = a2 * a2

r2e = r2 + 4

_sqrA: a0 = a2 * *r3++

a0 = a0 + *r3++

a0 = a0 + al * *r3++

al = a2 * *r3++

al = al + *r3++

a0=al +al *a0

a2 = a2 * *r3++

r4 = r4 + 64

a0 = a2 * a0

a l = a0 * a0

*r2 = r41

a0 = a0 * *r2

al = *r3 - al * a2

rle = *r14

nop
• rl = a0= a0* al

nop

goto r 14+4

hop

/* address of input value */

/* load exponent into cau */

/* 2's complement inverts exponent */

/* reset exponent of operand to zero */

/* skip sqrt(2) adjustment */
/* x^2 */

/* set pointer for sqrt(2) adjustment */

/* end of polynomial approximation */

/* start of iteration approximation */

/* final exponent = (opexp)/2 + 64 */

/* address of output location */

/* stores result */

_sqrB: float -0.38289166, 1.18787772, 0.049693281, -1.92155474

float 2.0667909, 0.5, 1.5000001

_sqrC: float 1.0, 1.4142136

.align 4

**

/* Routine source file: xtoy.asm */

/* DSP32/DSP32C Application Software Library. Version 2.0 */

/*

To use this routine with DSP32C, bit 4 of DAUC must be set to 0.

_xtoy(A,B,C,D)

120

float *A, *B, *C, *D;
scratchregister short r5, r6;

scratch pointer register short rl,r2,r3,,r4,r7,rl4;

scratch register float a0,al,a2,a3;
*/

#include <dspregs.h> /* Translates DSP32C keywords to DSP32 *

• keywords. See Section 2.3.1 */

_xtoy:
r2e=*rl4++

rle-*rl4++

r4e=_xtoyC+32

* r2=aO=* r 1

r7e=*rl4++

r3e=r2 + 4

/* computes log(x) [base 2] */

/* pointer to a copy of x */

/* pointer to operand, x */

/* pointer to c8 */

/* load x into copy */

/* pointer to y */

/* pointer to scratch pad for exponent */

/* extract mantissa, M, and divide by 2 */

r5=-I + 128 /* -1 plus bias */

r2=r51 / replace exponent of operand with "- 1" */

a3=*r2 /* move M/2 into a3 */

/* store exponent, E, as a floating point number */
r61=*rl

nop
r6=r6+ 1- 128

*r3=r6

*r3=a0=float(*r3)

/* get exponent (byte) */

/* remove bias and add 1 */

/* store as an integer */
/* convert to float and store */

/* compute log(M/2) in base 2 */

a0 = a3 * a3 /* (M/2)^2 */

a 1 = *r4-- + a3 * *r4--

a2 = *r4-- + a3 * *r4--

a0 = a0 * a3

al = *r4-- + al * a3

a3 = *r4-- + a3 * *r4--

a2 = *r4-- + a2 * *r2

al = al * a0

a3 = *r4 + a3 * *r2

a2 = a3 + a2 *a0

al =a2+al* a0

a0 = al + *r3

/* c7 + c8'M/2 */

/* c4 + c5"M/2 */

/* (M/2)^3 */

/* c6 + c7"(M/2) + c8"((M/2)^2) */

/* c I + c2"M/2 */

/* c3 + (M/2)*(c4 + c5"(M/2)) */

/* c6,((M/2)^3)+c7" ((M/2)^4)+

c8.((M/2)^5) */

/* cO + c I*(M/2) + C2*((M/2)A2) */

/* cO + c I*(M/2) + ... +

c5"((M/2)^5) */

/* cO + cl*(M/2) + ... +

c8"((M/2)^8) */

/* add (E+I) ==> a0=log(x) [base 2] */

/* computes 2^{y*log(x)} [base 2] */

121

r2e= *r14++
r3e= _xtoyD
a0= a0* *r7

/* r2 points to output location */

/* r3 points to 0.5 and then ci's */

/* y*log(x) [base 2] */

a3 = a0 - *r3++

*r2 = a3 = int(a3)

/* x - 0.5 */

/* stores i, the "integer" part */

a3 = float(a3)

a3 = -a3 + a0

/* converts i to float format */

/* computes f, the "fractional part */

nop
r61 = *r2 /* stores i in r61 */

/* computes 2^f below */

a0 = a3 * a3

al = *r3++ + a3 * *r3++

a2 = *r3++ + a3 * *r3++

a0= a0* a0

a3 = *r3 + a3 * *r3++

al =a3 +al * a0

• r2= a2 = al + a2* a0

/* f"2 */

/* c2+c3(f) */

/* c4+c5(f) */

/* f^4 */

/* c0+c l(f) */

/* c0+c 1(f)+c2(fA2)+c3(f^3) */

/* c0+c l(f)+...+c5(f^5) */

r6 = r6 + 128

nop

nop
*r2 = r61

a0 = *r2

return (r14)

nop

/* adjusts exponent for bias */

/* waits for DAU to */

/* write the mantissa */

/* merge in exponent */

_xtoyC: float -4.4254182 /* cO */

float 74.29184809343 /* c3 */

float 16.3099009156 /* cl */

float -40.02997556826 /* c2 */

float -47.89989096077 /* c6 */

float -96.221745 /* c4 */

float 84.44820241827 /* c5 */

float 15.8541655496 /* c7 */

float-2.32707607725 /* c8 */

_xtoyD: float 0.5

float 0.0558263180623292

float 0.240153617040129

float 0.0018775766770276

float 0.0089893400833312

/* c3 */

/* c2 */

/* c5 */

/* c4 */

122

float 0.6931530732007278
float 0.9999999702

.rsect".R0"

.align4
IpPrev: 2*float 42.0
Ip: 200*float

.rsect".R1"

.align4
QpPrev:
Qp:

VpCoeff:

float 0.0,0.0

2*float 69.0
200*float

float 0.0,0.0

float 5.2521131 /*

/*

VarCoeff: float 18.389794 /*

/*

OneThird: float 1.0/3.0

FourThirds: float 4.0/3.0

pi: float 3.1415926535898
Zero: float 0.0

temp I: float 0.0

temp2: float 0.0

temp3: float 0.0

temp4: float 0.0

Routaddr: int24 0

.align 4
Countl: int 598

Count2: int 199

Count3: int 10

Count4: int 26

NumBlock: int 8

RangeGates: int 1

.align 4

NumPulse: float 1998.0

/* cl */

/* cO */

/* Contains Ip from previous block */

/* Contains Ip for current block */

/* #pulses each range */

/* Overshoot zone. DON'T REMOVE! */

/* Contains Qp from previous block */

/* Contains Qp for current block */

/* #pulses each range */
/* Overshoot zone. DON'T REMOVE! */

Coefficient needed to get mean Doppler */

VpCoeff = (lambda/2)*[PRF/(2*pi)] */
Ditto for variance of the time series */

VarCoeff = lambdaA2*PRF^2/[24*pi^2] */

/* scratch registers... */

/* scratch address register */

/* #range gates * #pulses each range - 2 */

/* Note: #pulses means ONE BLOCK ONLY!! */

/* #pulses each range - 1 */

/* again, #pulses ONE BLOCK ONLY! */

/* Distance between consequtive pulses in

• packed I & Q array for a given range

• distance = #range gates * 4 - 2 */

/* (#range gates * 9) - 1 */

/* # blocks of data - 2 that comprise a Dwell */

/* Number of range gates - 2 */

/* Number of Pulses each range - 2

* INCLUDES ALL BLOCKS (IE. TOTAL

* # PULSES - 2 FOR ALL BLOCKS!!!) */

123

pack:
holdpack:
PackFlag:

Fubar:
stopflag:
addrflag:

.rsect".R2"

.align4
I0:
I1:
I2:
QI:
Q2:
theta:
R0:
RI:
R2:
Vp:
Var:
SNR:

float 0.0
int 0
int 0

int 0xaaaa
int 1
float 0.0

float 0.0
float 0.0
float 0.0
float 0.0
float0.0
float 0.0
float 0.0
float 0.0
float 0.0
float 0.0
float 0.0
float 0.0

/* holding spot for result packing */

/* holds extra result between range packing */

/* >0 => SNR from last range waiting to be

* packed. It is sitting in holdpack.

* =0 => previous range completely packed */

/* For test purposes only */

/* For test purposes only */

/* for test purposes only */

/* IMPORTANT!! The variables I0-Q2 */

/* *MUST* remain in this order - the */

/* program assumes they are blocked as */

/* shown when loading them... */

/* argument of lag 1 autocorrelation */

/* magnitude of lag 0 autocorrelation */

/* magnitude of lag 1 autocorrelation */

/* magnitude of lag 2 autocorrelation */

/* Doppler velocity */
/* Variance */

/* Signal to Noise Ratio */

.rsect ".text"

.align 4

IQPack:

._ign 4
PartSum:

.align 4

Range_cnt:

Dwell_cnt:

1200*int 0xffff

27*float 23.0

int 0

int 0

/* buffer holding packed I & Q */

/* 2*#range gates*#pulses each range */

/* Partial I & Q sums */

/* should be 9*#range gates */

/* for test purposes */

/* for test purposes */

124

